These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26629610)

  • 41. Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock.
    Constantinou M; Rigas GP; Castro FA; Stolojan V; Hoettges KF; Hughes MP; Adkins E; Korgel BA; Shkunov M
    ACS Nano; 2016 Apr; 10(4):4384-94. PubMed ID: 27002685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires.
    Valenta J; Bruhn B; Linnros J
    Nano Lett; 2011 Jul; 11(7):3003-9. PubMed ID: 21711002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrafast Optical Nanoscopy of Carrier Dynamics in Silicon Nanowires.
    Li J; Yang R; Rho Y; Ci P; Eliceiri M; Park HK; Wu J; Grigoropoulos CP
    Nano Lett; 2023 Feb; 23(4):1445-1450. PubMed ID: 36695528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Field-effect modulation of thermoelectric properties in multigated silicon nanowires.
    Curtin BM; Codecido EA; Krämer S; Bowers JE
    Nano Lett; 2013; 13(11):5503-8. PubMed ID: 24138582
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phonon Engineering in Isotopically Disordered Silicon Nanowires.
    Mukherjee S; Givan U; Senz S; Bergeron A; Francoeur S; de la Mata M; Arbiol J; Sekiguchi T; Itoh KM; Isheim D; Seidman DN; Moutanabbir O
    Nano Lett; 2015 Jun; 15(6):3885-93. PubMed ID: 25993500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration.
    Park JY; Moon DI; Seol ML; Jeon CH; Jeon GJ; Han JW; Kim CK; Park SJ; Lee HC; Choi YK
    Sci Rep; 2016 Jan; 6():19314. PubMed ID: 26782708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.
    Shen D; Zhan Z; Liu Z; Cao Y; Zhou L; Liu Y; Dai W; Nishimura K; Li C; Lin CT; Jiang N; Yu J
    Sci Rep; 2017 Jun; 7(1):2606. PubMed ID: 28572604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy.
    Guzelturk B; Utterback JK; Coropceanu I; Kamysbayev V; Janke EM; Zajac M; Yazdani N; Cotts BL; Park S; Sood A; Lin MF; Reid AH; Kozina ME; Shen X; Weathersby SP; Wood V; Salleo A; Wang X; Talapin DV; Ginsberg NS; Lindenberg AM
    ACS Nano; 2020 Apr; 14(4):4792-4804. PubMed ID: 32208676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultralow thermal conductivity of isotope-doped silicon nanowires.
    Yang N; Zhang G; Li B
    Nano Lett; 2008 Jan; 8(1):276-80. PubMed ID: 18095735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bismuth nanowires with very low lattice thermal conductivity as revealed by the 3ω method.
    Holtzman A; Shapira E; Selzer Y
    Nanotechnology; 2012 Dec; 23(49):495711. PubMed ID: 23154308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate.
    Damerchi E; Oras S; Butanovs E; Liivlaid A; Antsov M; Polyakov B; Trausa A; Zadin V; Kyritsakis A; Vidal L; Mougin K; Pikker S; Vlassov S
    Beilstein J Nanotechnol; 2024; 15():435-446. PubMed ID: 38711582
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Size-Dependent Localized Phonon Population in Semiconducting Si Nanowires.
    Patsha A; Dhara S
    Nano Lett; 2018 Nov; 18(11):7181-7187. PubMed ID: 30352163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method.
    Lee KM; Choi TY; Lee SK; Poulikakos D
    Nanotechnology; 2010 Mar; 21(12):125301. PubMed ID: 20195013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strain- and defect-mediated thermal conductivity in silicon nanowires.
    Murphy KF; Piccione B; Zanjani MB; Lukes JR; Gianola DS
    Nano Lett; 2014 Jul; 14(7):3785-92. PubMed ID: 24885097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.