BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26629704)

  • 21. Smart phone monitoring of second heart sound split.
    Thiyagaraja SR; Vempati J; Dantu R; Sarma T; Dantu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2181-4. PubMed ID: 25570418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral analysis of heart sounds: relationships between some physical characteristics and frequency spectra of first and second heart sounds in normals and hypertensives.
    Arnott PJ; Pfeiffer GW; Tavel ME
    J Biomed Eng; 1984 Apr; 6(2):121-8. PubMed ID: 6708485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-based detection and analysis of heart sound and murmur.
    El-Segaier M; Lilja O; Lukkarinen S; Sörnmo L; Sepponen R; Pesonen E
    Ann Biomed Eng; 2005 Jul; 33(7):937-42. PubMed ID: 16060534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic feature based unsupervised approach of heart sound event detection.
    Das S; Pal S; Mitra M
    Comput Biol Med; 2020 Nov; 126():103990. PubMed ID: 32987200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds.
    Mubarak QU; Akram MU; Shaukat A; Hussain F; Khawaja SG; Butt WH
    Comput Methods Programs Biomed; 2018 Oct; 164():143-157. PubMed ID: 30195422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. S1 and S2 Heart Sound Recognition Using Deep Neural Networks.
    Chen TE; Yang SI; Ho LT; Tsai KH; Chen YH; Chang YF; Lai YH; Wang SS; Tsao Y; Wu CC
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):372-380. PubMed ID: 28113191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study of single-channel signal processing methods in fetal phonocardiography.
    Barnova K; Kahankova R; Jaros R; Litschmannova M; Martinek R
    PLoS One; 2022; 17(8):e0269884. PubMed ID: 35984866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the dual-tree complex wavelet transform in biomedical signal denoising.
    Wang F; Ji Z
    Biomed Mater Eng; 2014; 24(1):109-15. PubMed ID: 24211889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wavelet and Spectral Analysis of Normal and Abnormal Heart Sound for Diagnosing Cardiac Disorders.
    Hossain A; Uddin S; Rahman P; Anee MJ; Rifat MMH; Uddin MM
    Biomed Res Int; 2022; 2022():9092346. PubMed ID: 35937404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Diagnosis of pulmonary hypertension associated with congenital heart disease based on statistical features of the second heart sound].
    Yang X; Sun J; Yang H; Guo T; Pan J; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):41-50. PubMed ID: 38403603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of the heart sound envelope using the logistic function amplitude moderation method.
    Kamson AP; Sharma LN; Dandapat S
    Comput Methods Programs Biomed; 2020 Apr; 187():105239. PubMed ID: 31835106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data.
    Chiarelli AM; Maclin EL; Fabiani M; Gratton G
    Neuroimage; 2015 May; 112():128-137. PubMed ID: 25747916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effectiveness of the choice of criteria on the stationary and non-stationary noise removal in the phonocardiogram (PCG) signal using discrete wavelet transform.
    Rouis M; Sbaa S; Benhassine NE
    Biomed Tech (Berl); 2020 May; 65(3):353-366. PubMed ID: 31782944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.
    Sun S; Jiang Z; Wang H; Fang Y
    Comput Methods Programs Biomed; 2014 May; 114(3):219-30. PubMed ID: 24657095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A wavelet-based method for MRI liver image denoising.
    Ali MN
    Biomed Tech (Berl); 2019 Dec; 64(6):699-709. PubMed ID: 31145685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Approach for Automatic Identification of Fundamental and Additional Sounds from Cardiac Sounds Recordings.
    Dwivedi AK; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6685-6688. PubMed ID: 31947375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG.
    Chen D; Wan S; Xiang J; Bao FS
    PLoS One; 2017; 12(3):e0173138. PubMed ID: 28278203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haemodynamic and structural correlates of the first and second heart sounds in pulmonary arterial hypertension: an acoustic cardiography cohort study.
    Chan W; Woldeyohannes M; Colman R; Arand P; Michaels AD; Parker JD; Granton JT; Mak S
    BMJ Open; 2013; 3(4):. PubMed ID: 23572199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noisy Neonatal Chest Sound Separation for High-Quality Heart and Lung Sounds.
    Grooby E; Sitaula C; Fattahi D; Sameni R; Tan K; Zhou L; King A; Ramanathan A; Malhotra A; Dumont G; Marzbanrad F
    IEEE J Biomed Health Inform; 2023 Jun; 27(6):2635-2646. PubMed ID: 36264732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmentation of heart sound recordings by a duration-dependent hidden Markov model.
    Schmidt SE; Holst-Hansen C; Graff C; Toft E; Struijk JJ
    Physiol Meas; 2010 Apr; 31(4):513-29. PubMed ID: 20208091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.