These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Raut MP; Couto N; Karunakaran E; Biggs CA; Wright PC Sci Rep; 2019 Nov; 9(1):16542. PubMed ID: 31719545 [TBL] [Abstract][Full Text] [Related]
4. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. Raut MP; Karunakaran E; Mukherjee J; Biggs CA; Wright PC PLoS One; 2015; 10(10):e0141197. PubMed ID: 26492413 [TBL] [Abstract][Full Text] [Related]
5. Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. Jun HS; Qi M; Gong J; Egbosimba EE; Forsberg CW J Bacteriol; 2007 Oct; 189(19):6806-15. PubMed ID: 17644604 [TBL] [Abstract][Full Text] [Related]
6. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Arntzen MØ; Várnai A; Mackie RI; Eijsink VGH; Pope PB Environ Microbiol; 2017 Jul; 19(7):2701-2714. PubMed ID: 28447389 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Seon Park J; Russell JB; Wilson DB Anaerobe; 2007 Apr; 13(2):83-8. PubMed ID: 17292641 [TBL] [Abstract][Full Text] [Related]
8. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose. Ghali I; Sofyan A; Ohmori H; Shinkai T; Mitsumori M FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859317 [TBL] [Abstract][Full Text] [Related]
10. Production of oligosaccharides and cellobionic acid by Fibrobacter succinogenes S85 growing on sugars, cellulose and wheat straw. Nouaille R; Matulova M; Pätoprstý V; Delort AM; Forano E Appl Microbiol Biotechnol; 2009 Jun; 83(3):425-33. PubMed ID: 19184595 [TBL] [Abstract][Full Text] [Related]
11. A global analysis of gene expression in Neumann AP; Weimer PJ; Suen G Biotechnol Biofuels; 2018; 11():295. PubMed ID: 30386432 [TBL] [Abstract][Full Text] [Related]
16. Periplasmic Cytophaga hutchinsonii Endoglucanases Are Required for Use of Crystalline Cellulose as the Sole Source of Carbon and Energy. Zhu Y; Han L; Hefferon KL; Silvaggi NR; Wilson DB; McBride MJ Appl Environ Microbiol; 2016 Aug; 82(15):4835-4845. PubMed ID: 27260354 [TBL] [Abstract][Full Text] [Related]
17. The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation. Thomas S; Russell JB Curr Microbiol; 2004 Mar; 48(3):219-23. PubMed ID: 15057469 [TBL] [Abstract][Full Text] [Related]
18. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. Nouaille R; Matulova M; Delort AM; Forano E FEBS J; 2005 May; 272(10):2416-27. PubMed ID: 15885092 [TBL] [Abstract][Full Text] [Related]
19. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. Bibollet X; Bosc N; Matulova M; Delort AM; Gaudet G; Forano E J Biotechnol; 2000 Jan; 77(1):37-47. PubMed ID: 10674213 [TBL] [Abstract][Full Text] [Related]
20. Cel9D, an atypical 1,4-beta-D-glucan glucohydrolase from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases. Qi M; Jun HS; Forsberg CW J Bacteriol; 2008 Mar; 190(6):1976-84. PubMed ID: 18203823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]