BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26629950)

  • 1. Formation of 2-nitrophenol from salicylaldehyde as a suitable test for low peroxynitrite fluxes.
    Mikhed Y; Bruns K; Schildknecht S; Jörg M; Dib M; Oelze M; Lackner KJ; Münzel T; Ullrich V; Daiber A
    Redox Biol; 2016 Apr; 7():39-47. PubMed ID: 26629950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester.
    Bartesaghi S; Valez V; Trujillo M; Peluffo G; Romero N; Zhang H; Kalyanaraman B; Radi R
    Biochemistry; 2006 Jun; 45(22):6813-25. PubMed ID: 16734418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of nitrated and hydroxylated aromatic compounds from benzene and peroxynitrite, a possible mechanism of benzene genotoxicity.
    Tuo J; Wolff SP; Loft S; Poulsen HE
    Free Radic Res; 1998 Apr; 28(4):369-75. PubMed ID: 9684981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester to red blood cell membranes to study peroxynitrite-dependent reactions.
    Romero N; Peluffo G; Bartesaghi S; Zhang H; Joseph J; Kalyanaraman B; Radi R
    Chem Res Toxicol; 2007 Nov; 20(11):1638-48. PubMed ID: 17941688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite.
    Batthyány C; Souza JM; Durán R; Cassina A; Cerveñansky C; Radi R
    Biochemistry; 2005 Jun; 44(22):8038-46. PubMed ID: 15924423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrosation, nitration, and autoxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species.
    Toader V; Xu X; Nicolescu A; Yu L; Bolton JL; Thatcher GR
    Chem Res Toxicol; 2003 Oct; 16(10):1264-76. PubMed ID: 14565768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical mechanisms of the decomposition of peroxynitrite and the peroxynitrite-CO(2) adduct and of reactions with L-tyrosine and related compounds as studied by (15)N chemically induced dynamic nuclear polarization.
    Lehnig M
    Arch Biochem Biophys; 1999 Aug; 368(2):303-18. PubMed ID: 10441382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective.
    Tsikas D; Duncan MW
    Mass Spectrom Rev; 2014; 33(4):237-76. PubMed ID: 24167057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrosation by peroxynitrite: use of phenol as a probe.
    Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA
    Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate enhances alpha-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical.
    Andrekopoulos C; Zhang H; Joseph J; Kalivendi S; Kalyanaraman B
    Biochem J; 2004 Mar; 378(Pt 2):435-47. PubMed ID: 14640973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New aspects in the reaction mechanism of phenol with peroxynitrite: the role of phenoxy radicals.
    Daiber A; Mehl M; Ullrich V
    Nitric Oxide; 1998; 2(4):259-69. PubMed ID: 9851367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite.
    Lemercier JN; Padmaja S; Cueto R; Squadrito GL; Uppu RM; Pryor WA
    Arch Biochem Biophys; 1997 Sep; 345(1):160-70. PubMed ID: 9281324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the nitration site of insulin by peroxynitrite.
    Chi Q; Huang K
    J Pept Sci; 2007 Mar; 13(3):149-53. PubMed ID: 17121419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine nitration, dimerization, and hydroxylation by peroxynitrite in membranes as studied by the hydrophobic probe N-t-BOC-l-tyrosine tert-butyl ester.
    Bartesaghi S; Peluffo G; Zhang H; Joseph J; Kalyanaraman B; Radi R
    Methods Enzymol; 2008; 441():217-36. PubMed ID: 18554537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO).
    Ji Y; Wang L; Jiang M; Lu J; Ferronato C; Chovelon JM
    Water Res; 2017 Oct; 123():249-257. PubMed ID: 28672209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid.
    Trujillo M; Folkes L; Bartesaghi S; Kalyanaraman B; Wardman P; Radi R
    Free Radic Biol Med; 2005 Jul; 39(2):279-88. PubMed ID: 15964519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection.
    Grzelakowska A; Modrzejewska J; Kolińska J; Szala M; Zielonka M; Dębowska K; Zakłos-Szyda M; Sikora A; Zielonka J; Podsiadły R
    Free Radic Biol Med; 2022 Feb; 179():34-46. PubMed ID: 34923103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GC-MS/MS and LC-MS/MS studies on unlabelled and deuterium-labelled oleic acid (C18:1) reactions with peroxynitrite (O=N-O-O⁻) in buffer and hemolysate support the pM/nM-range of nitro-oleic acids in human plasma.
    Trettin A; Böhmer A; Zoerner AA; Gutzki FM; Jordan J; Tsikas D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 964():172-9. PubMed ID: 24507967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications.
    Sikora A; Zielonka J; Adamus J; Debski D; Dybala-Defratyka A; Michalowski B; Joseph J; Hartley RC; Murphy MP; Kalyanaraman B
    Chem Res Toxicol; 2013 Jun; 26(6):856-67. PubMed ID: 23611338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 18O.
    Niles JC; Wishnok JS; Tannenbaum SR
    Chem Res Toxicol; 2004 Nov; 17(11):1510-9. PubMed ID: 15540949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.