These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

647 related articles for article (PubMed ID: 26629955)

  • 1. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy.
    Wu Y; Brooks CL
    J Chem Inf Model; 2021 Nov; 61(11):5535-5549. PubMed ID: 34704754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher Accuracy Achieved for Protein-Ligand Binding Pose Prediction by Elastic Network Model-Based Ensemble Docking.
    Wang A; Zhang Y; Chu H; Liao C; Zhang Z; Li G
    J Chem Inf Model; 2020 Jun; 60(6):2939-2950. PubMed ID: 32383873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing.
    Luo Q; Zhao L; Hu J; Jin H; Liu Z; Zhang L
    PLoS One; 2017; 12(2):e0171433. PubMed ID: 28196116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GalaxyDock: protein-ligand docking with flexible protein side-chains.
    Shin WH; Seok C
    J Chem Inf Model; 2012 Dec; 52(12):3225-32. PubMed ID: 23198780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A python-based docking program utilizing a receptor bound ligand shape: PythDock.
    Chung JY; Cho SJ; Hah JM
    Arch Pharm Res; 2011 Sep; 34(9):1451-8. PubMed ID: 21975806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking.
    Li C; Sun J; Palade V
    BMC Bioinformatics; 2020 Jul; 21(1):286. PubMed ID: 32631216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2018 Jan; 32(1):187-198. PubMed ID: 28887659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Cuckoo Search and Differential Evolution Approach to Protein⁻Ligand Docking.
    Lin H; Siu SWI
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling loop backbone flexibility in receptor-ligand docking simulations.
    Flick J; Tristram F; Wenzel W
    J Comput Chem; 2012 Dec; 33(31):2504-15. PubMed ID: 22886372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
    Santos-Martins D; Eberhardt J; Bianco G; Solis-Vasquez L; Ambrosio FA; Koch A; Forli S
    J Comput Aided Mol Des; 2019 Dec; 33(12):1071-1081. PubMed ID: 31691920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.