These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26630000)

  • 1. Environmental Implications of Hydroxyl Radicals ((•)OH).
    Gligorovski S; Strekowski R; Barbati S; Vione D
    Chem Rev; 2015 Dec; 115(24):13051-92. PubMed ID: 26630000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters.
    Arakaki T; Anastasio C; Kuroki Y; Nakajima H; Okada K; Kotani Y; Handa D; Azechi S; Kimura T; Tsuhako A; Miyagi Y
    Environ Sci Technol; 2013 Aug; 47(15):8196-203. PubMed ID: 23822860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid.
    Bartolomei V; Gomez Alvarez E; Wittmer J; Tlili S; Strekowski R; Temime-Roussel B; Quivet E; Wortham H; Zetzsch C; Kleffmann J; Gligorovski S
    Environ Sci Technol; 2015 Jun; 49(11):6599-607. PubMed ID: 25942056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death.
    Llabrés M; Dachs J; Agustí S
    Photochem Photobiol; 2012; 88(6):1473-9. PubMed ID: 22671442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.
    Page SE; Logan JR; Cory RM; McNeill K
    Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First evaluation of the effect of microorganisms on steady state hydroxyl radical concentrations in atmospheric waters.
    Lallement A; Vinatier V; Brigante M; Deguillaume L; Delort AM; Mailhot G
    Chemosphere; 2018 Dec; 212():715-722. PubMed ID: 30179836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical reactions among indoor pollutants: what we've learned in the new millennium.
    Weschler CJ
    Indoor Air; 2004; 14 Suppl 7():184-94. PubMed ID: 15330786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric lifetimes and fates of selected fragrance materials and volatile model compounds.
    Aschmann SM; Arey J; Atkinson R; Simonich SL
    Environ Sci Technol; 2001 Sep; 35(18):3595-600. PubMed ID: 11783633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preliminary study on HOx photochemical processes in urban atmosphere of Guangzhou City].
    Ren XR; Wang HX; Shao KS; Tang XY
    Huan Jing Ke Xue; 2004 Jul; 25(4):28-31. PubMed ID: 15515931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and mechanism of OH-initiated atmospheric oxidation of organophosphorus plasticizers: A computational study on tri-p-cresyl phosphate.
    Li C; Zheng S; Chen J; Xie HB; Zhang YN; Zhao Y; Du Z
    Chemosphere; 2018 Jun; 201():557-563. PubMed ID: 29533805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters.
    Passananti M; Temussi F; Iesce MR; Mailhot G; Brigante M
    Water Res; 2013 Sep; 47(14):5422-30. PubMed ID: 23863380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical perspectives on the mechanism and kinetics of the OH radical-initiated gas-phase oxidation of PCB126 in the atmosphere.
    Dang J; Shi X; Zhang Q; Wang W
    Sci Total Environ; 2015 Jun; 517():1-9. PubMed ID: 25721142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark formation of hydroxyl radical in Arctic soil and surface waters.
    Page SE; Kling GW; Sander M; Harrold KH; Logan JR; McNeill K; Cory RM
    Environ Sci Technol; 2013 Nov; 47(22):12860-7. PubMed ID: 24111975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and kinetics studies of the atmospheric oxidation of p,p'-Dicofol by OH and NO
    Dang J; Tian S; Zhang Q
    Chemosphere; 2019 Mar; 219():645-654. PubMed ID: 30557720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do hydroxyl radical-water clusters, OH(H2O)n, n = 1-5, exist in the atmosphere?
    Allodi MA; Dunn ME; Livada J; Kirschner KN; Shields GC
    J Phys Chem A; 2006 Dec; 110(49):13283-9. PubMed ID: 17149847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials.
    Sulbaek Andersen MP; Nielsen OJ; Karpichev B; Wallington TJ; Sander SP
    J Phys Chem A; 2012 Jun; 116(24):5806-20. PubMed ID: 22146013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene.
    Dang J; Shi X; Zhang Q; Hu J; Wang W
    Sci Total Environ; 2015 Feb; 505():787-94. PubMed ID: 25461081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds.
    Coeur-Tourneur C; Cassez A; Wenger JC
    J Phys Chem A; 2010 Nov; 114(43):11645-50. PubMed ID: 20919717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-mechanism and rate constants for OH-initiated degradation of methomyl in atmosphere.
    Wu X; Sun X; Zhang C; Gong C; Hu J
    Chemosphere; 2014 Jul; 107():331-335. PubMed ID: 24462084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced formation of hydroxyl radicals in fog waters determined by an authentic fog constituent, hydroxymethanesulfonate.
    Zuo Y
    Chemosphere; 2003 Apr; 51(3):175-9. PubMed ID: 12591250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.