These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26630450)

  • 1. Effects of Secondary Metal Carbonate Addition on the Porous Character of Resorcinol-Formaldehyde Xerogels.
    Taylor SJ; Haw MD; Sefcik J; Fletcher AJ
    Langmuir; 2015 Dec; 31(50):13571-80. PubMed ID: 26630450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering.
    Taylor SJ; Haw MD; Sefcik J; Fletcher AJ
    Langmuir; 2014 Sep; 30(34):10231-40. PubMed ID: 25100498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Cations in Resorcinol-Formaldehyde Gel Textural Characteristics.
    Taylor SJ; Yang L; Fletcher AJ
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Textural and mechanical characteristics of carbon aerogels synthesized by polymerization of resorcinol and formaldehyde using alkali carbonates as basification agents.
    Morales-Torres S; Maldonado-Hódar FJ; Pérez-Cadenas AF; Carrasco-Marín F
    Phys Chem Chem Phys; 2010 Sep; 12(35):10365-72. PubMed ID: 20582362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and kinetics of nanostructure evolution during early stages of resorcinol-formaldehyde polymerisation.
    Gaca KZ; Sefcik J
    J Colloid Interface Sci; 2013 Sep; 406():51-9. PubMed ID: 23800375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a feasible and scalable production of bio-xerogels.
    Rey-Raap N; Szczurek A; Fierro V; Menéndez JA; Arenillas A; Celzard A
    J Colloid Interface Sci; 2015 Oct; 456():138-44. PubMed ID: 26119083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling Organic Gel Growth in Three Dimensions: Textural and Fractal Properties of Resorcinol-Formaldehyde Gels.
    Martin E; Prostredny M; Fletcher A; Mulheran P
    Gels; 2020 Aug; 6(3):. PubMed ID: 32764292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resorcinol-Formaldehyde-Derived Carbon Xerogels: Preparation, Functionalization, and Application Aspects.
    Veselov GB; Vedyagin AA
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels.
    Calvo EG; Juárez-Pérez EJ; Menéndez JA; Arenillas A
    J Colloid Interface Sci; 2011 May; 357(2):541-7. PubMed ID: 21392777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of texture and surface chemistry of carbon xerogels.
    Mahata N; Pereira MF; Suárez-García F; Martínez-Alonso A; Tascón JM; Figueiredo JL
    J Colloid Interface Sci; 2008 Aug; 324(1-2):150-5. PubMed ID: 18533175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free synthesis of monolithic carbon xerogels with hierarchical porosity from resorcinol and formaldehyde
    Cho G; Lee JY; Yoon TH
    RSC Adv; 2018 Jun; 8(38):21326-21331. PubMed ID: 35539906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels.
    Prostredný M; Ledingham C; Principe IA; Altoumi ASM; Fletcher AJ
    Gels; 2020 Jul; 6(3):. PubMed ID: 32751834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Role of the Catalyst within Resorcinol-Formaldehyde Gel Synthesis.
    Martin E; Prostredny M; Fletcher A
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Aromatic Amines on the Properties of Formaldehyde-Based Xerogels.
    Martin D; Prostredný M; Fletcher AJ
    Gels; 2020 Mar; 6(1):. PubMed ID: 32131423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical interactions of surface-active agents with growing resorcinol-formaldehyde gels.
    Jirglová H; Maldonado-Hódar FJ
    Langmuir; 2010 Oct; 26(20):16103-9. PubMed ID: 20860392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances.
    Zapata-Benabithe Z; Carrasco-Marín F; de Vicente J; Moreno-Castilla C
    Langmuir; 2013 May; 29(20):6166-73. PubMed ID: 23617279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels.
    Mahata N; Silva AR; Pereira MF; Freire C; de Castro B; Figueiredo JL
    J Colloid Interface Sci; 2007 Jul; 311(1):152-8. PubMed ID: 17376469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobization of Monolithic Resorcinol-Formaldehyde Xerogels by Means of Silylation.
    Henn F; Tannert R
    Gels; 2022 May; 8(5):. PubMed ID: 35621602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Na(2)CO(3), NaF and NH(4)OH on the stability and release behavior of sol-gel derived silica xerogels embedded with bioactive compounds.
    Morpurgo M; Teoli D; Pignatto M; Attrezzi M; Spadaro F; Realdon N
    Acta Biomater; 2010 Jun; 6(6):2246-53. PubMed ID: 20035908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Chitosan's Addition to Resorcinol/Formaldehyde Xerogels on the Characteristics of Resultant Activated Carbon.
    Awadallah-F A; Al-Muhtaseb SA
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.