These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26630486)
1. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle. Chen Z; Gallie DR PLoS One; 2015; 10(12):e0144209. PubMed ID: 26630486 [TBL] [Abstract][Full Text] [Related]
2. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis. Chen Z; Gallie DR Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437 [TBL] [Abstract][Full Text] [Related]
3. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. Zhou J; Zeng L; Liu J; Xing D PLoS Pathog; 2015 May; 11(5):e1004878. PubMed ID: 25993128 [TBL] [Abstract][Full Text] [Related]
4. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Hieber AD; Kawabata O; Yamamoto HY Plant Cell Physiol; 2004 Jan; 45(1):92-102. PubMed ID: 14749490 [TBL] [Abstract][Full Text] [Related]
5. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Müller-Moulé P; Conklin PL; Niyogi KK Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252 [TBL] [Abstract][Full Text] [Related]
6. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling. Ding F; Wang M; Liu B; Zhang S Front Plant Sci; 2017; 8():244. PubMed ID: 28265283 [TBL] [Abstract][Full Text] [Related]
7. A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Peterson RB; Havir EA Planta; 2000 Jan; 210(2):205-14. PubMed ID: 10664126 [TBL] [Abstract][Full Text] [Related]
8. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Kohzuma K; Hikosaka K Biochem Biophys Res Commun; 2018 Mar; 498(1):52-57. PubMed ID: 29501490 [TBL] [Abstract][Full Text] [Related]
9. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis. Guan C; Ji J; Zhang X; Li X; Jin C; Guan W; Wang G J Plant Physiol; 2015 Mar; 175():26-36. PubMed ID: 25460873 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
11. The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation. Yu ZB; Lu Y; Du JJ; Peng JJ; Wang XY J Photochem Photobiol B; 2014 Jan; 130():68-75. PubMed ID: 24300993 [TBL] [Abstract][Full Text] [Related]
12. The Amount of Zeaxanthin Epoxidase But Not the Amount of Violaxanthin De-Epoxidase Is a Critical Determinant of Zeaxanthin Accumulation in Arabidopsis thaliana and Nicotiana tabacum. Küster L; Lücke R; Brabender C; Bethmann S; Jahns P Plant Cell Physiol; 2023 Oct; 64(10):1220-1230. PubMed ID: 37556318 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Niyogi KK; Grossman AR; Björkman O Plant Cell; 1998 Jul; 10(7):1121-34. PubMed ID: 9668132 [TBL] [Abstract][Full Text] [Related]
14. High non-photochemical quenching of VPZ transgenic potato plants limits CO Lehretz GG; Schneider A; Leister D; Sonnewald U J Integr Plant Biol; 2022 Sep; 64(9):1821-1832. PubMed ID: 35763422 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure. Zhang X; Ye N; Mou S; Xu D; Fan X Plant Physiol Biochem; 2013 Sep; 70():336-41. PubMed ID: 23811776 [TBL] [Abstract][Full Text] [Related]
16. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. Yin Y; Li S; Liao W; Lu Q; Wen X; Lu C J Plant Physiol; 2010 Aug; 167(12):959-66. PubMed ID: 20417985 [TBL] [Abstract][Full Text] [Related]
17. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Havaux M; Bonfils JP; Lütz C; Niyogi KK Plant Physiol; 2000 Sep; 124(1):273-84. PubMed ID: 10982442 [TBL] [Abstract][Full Text] [Related]
18. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Dall'Osto L; Cazzaniga S; Havaux M; Bassi R Mol Plant; 2010 May; 3(3):576-93. PubMed ID: 20100799 [TBL] [Abstract][Full Text] [Related]
19. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Lavaud J; Kroth PG Plant Cell Physiol; 2006 Jul; 47(7):1010-6. PubMed ID: 16699176 [TBL] [Abstract][Full Text] [Related]
20. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. Da Q; Sun T; Wang M; Jin H; Li M; Feng D; Wang J; Wang HB; Liu B Plant Cell Rep; 2018 Feb; 37(2):279-291. PubMed ID: 29080907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]