These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 26630971)
1. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [TBL] [Abstract][Full Text] [Related]
2. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus. Purin S; Morton JB Mycologia; 2013; 105(3):589-602. PubMed ID: 23233505 [TBL] [Abstract][Full Text] [Related]
3. Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Sbrana C; Fortuna P; Giovannetti M Mycologia; 2011; 103(2):307-16. PubMed ID: 21139032 [TBL] [Abstract][Full Text] [Related]
4. Divergence of Funneliformis mosseae populations over 20 years of laboratory cultivation, as revealed by vegetative incompatibility and molecular analysis. Sbrana C; Strani P; Pepe A; de Novais CB; Giovannetti M Mycorrhiza; 2018 May; 28(4):329-341. PubMed ID: 29574495 [TBL] [Abstract][Full Text] [Related]
5. Vegetative compatibility and anastomosis formation within and among individual germlings of tropical isolates of arbuscular mycorrhizal fungi (Glomeromycota). de Novais CB; Sbrana C; Saggin Júnior OJ; Siqueira JO; Giovannetti M Mycorrhiza; 2013 May; 23(4):325-31. PubMed ID: 23314797 [TBL] [Abstract][Full Text] [Related]
6. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2020 Sep; 30(5):589-600. PubMed ID: 32533256 [TBL] [Abstract][Full Text] [Related]
7. A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium. Sbrana C; Pepe A; Ferrol N; Giovannetti M Methods Mol Biol; 2020; 2146():33-41. PubMed ID: 32415593 [TBL] [Abstract][Full Text] [Related]
8. Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. Avio L; Pellegrino E; Bonari E; Giovannetti M New Phytol; 2006; 172(2):347-57. PubMed ID: 16995921 [TBL] [Abstract][Full Text] [Related]
9. In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Purin S; Morton JB Mycorrhiza; 2011 Aug; 21(6):505-514. PubMed ID: 21221661 [TBL] [Abstract][Full Text] [Related]
10. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Pepe A; Sbrana C; Ferrol N; Giovannetti M Mycorrhiza; 2017 Oct; 27(7):659-668. PubMed ID: 28573458 [TBL] [Abstract][Full Text] [Related]
11. Two herbicides, two fungicides and spore-associated bacteria affect Funneliformis mosseae extraradical mycelium structural traits and viability. de Novais CB; Giovannetti M; de Faria SM; Sbrana C Mycorrhiza; 2019 Jul; 29(4):341-349. PubMed ID: 31190279 [TBL] [Abstract][Full Text] [Related]
12. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Pepe A; Giovannetti M; Sbrana C Sci Rep; 2018 Jul; 8(1):10235. PubMed ID: 29980700 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. Scheublin TR; Sanders IR; Keel C; van der Meer JR ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983 [TBL] [Abstract][Full Text] [Related]
14. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Symanczik S; Courty PE; Boller T; Wiemken A; Al-Yahya'ei MN Mycorrhiza; 2015 Nov; 25(8):639-47. PubMed ID: 25860835 [TBL] [Abstract][Full Text] [Related]
15. Quantity and distribution of arbuscular mycorrhizal fungal storage organs within dead roots. Müller A; Ngwene B; Peiter E; George E Mycorrhiza; 2017 Apr; 27(3):201-210. PubMed ID: 27838855 [TBL] [Abstract][Full Text] [Related]
16. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Salloum MS; Guzzo MC; Velazquez MS; Sagadin MB; Luna CM Can J Microbiol; 2016 Dec; 62(12):1034-1040. PubMed ID: 27784163 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Schalamuk S; Cabello M Mycologia; 2010; 102(2):261-8. PubMed ID: 20361494 [TBL] [Abstract][Full Text] [Related]
18. At the root of the wood wide web: self recognition and non-self incompatibility in mycorrhizal networks. Giovannetti M; Avio L; Fortuna P; Pellegrino E; Sbrana C; Strani P Plant Signal Behav; 2006 Jan; 1(1):1-5. PubMed ID: 19521468 [TBL] [Abstract][Full Text] [Related]
19. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Gil-Cardeza ML; Calonne-Salmon M; Gómez E; Declerck S Chemosphere; 2017 Nov; 187():27-34. PubMed ID: 28829949 [TBL] [Abstract][Full Text] [Related]
20. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Egerton-Warburton LM; Querejeta JI; Allen MF J Exp Bot; 2007; 58(6):1473-83. PubMed ID: 17350936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]