These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 26631016)
1. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress. Li Z; Wang W; Li G; Guo K; Harvey P; Chen Q; Zhao Z; Wei Y; Li J; Yang H Protoplasma; 2016 Nov; 253(6):1541-1556. PubMed ID: 26631016 [TBL] [Abstract][Full Text] [Related]
2. MAPK-mediated enhanced expression of vacuolar H(+)-ATPase confers the improved adaption to NaCl stress in a halotolerate peppermint (Mentha piperita L.). Li Z; Zhen Z; Guo K; Harvey P; Li J; Yang H Protoplasma; 2016 Mar; 253(2):553-69. PubMed ID: 25999237 [TBL] [Abstract][Full Text] [Related]
3. Colonization of Trichoderma viride Tv-1511 in peppermint (Mentha × piperita L.) roots promotes essential oil production by triggering ROS-mediated MAPK activation. Guo K; Sui Y; Li Z; Huang Y; Zhang H; Wang W Plant Physiol Biochem; 2020 Jun; 151():705-718. PubMed ID: 32353676 [TBL] [Abstract][Full Text] [Related]
4. Some aspects of salinity responses in peppermint (Mentha × piperita L.) to NaCl treatment. Li Z; Yang H; Wu X; Guo K; Li J Protoplasma; 2015 May; 252(3):885-99. PubMed ID: 25388000 [TBL] [Abstract][Full Text] [Related]
5. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. Nair B Int J Toxicol; 2001; 20 Suppl 3():61-73. PubMed ID: 11766133 [TBL] [Abstract][Full Text] [Related]
6. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Mahmoud SS; Croteau RB Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14481-6. PubMed ID: 14623962 [TBL] [Abstract][Full Text] [Related]
7. Yield, content, and composition of peppermint and spearmints as a function of harvesting time and drying. Zheljazkov VD; Cantrell CL; Astatkie T; Hristov A J Agric Food Chem; 2010 Nov; 58(21):11400-7. PubMed ID: 20942459 [TBL] [Abstract][Full Text] [Related]
8. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.). Dolzhenko Y; Bertea CM; Occhipinti A; Bossi S; Maffei ME J Photochem Photobiol B; 2010 Aug; 100(2):67-75. PubMed ID: 20627615 [TBL] [Abstract][Full Text] [Related]
9. Chromosome doubling influences the morphological, physiological, biochemical and genetic traits related to essential oil biosynthesis of peppermint (Mentha piperita) under salinity stress. Zhao Z; Wei Y; Li L; Liu B; Yang K; Yang H; Li J J Plant Res; 2022 Jan; 135(1):93-104. PubMed ID: 34727276 [TBL] [Abstract][Full Text] [Related]
10. Seasonal variability of the main components in essential oil of Mentha × piperita L. Grulova D; De Martino L; Mancini E; Salamon I; De Feo V J Sci Food Agric; 2015 Feb; 95(3):621-7. PubMed ID: 24965379 [TBL] [Abstract][Full Text] [Related]
11. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses. Búfalo J; Rodrigues TM; de Almeida LFR; Tozin LRDS; Marques MOM; Boaro CSF Plant Physiol Biochem; 2016 Aug; 105():174-184. PubMed ID: 27107175 [TBL] [Abstract][Full Text] [Related]
12. Genetic engineering of peppermint for improved essential oil composition and yield. Wildung MR; Croteau RB Transgenic Res; 2005 Aug; 14(4):365-72. PubMed ID: 16201403 [TBL] [Abstract][Full Text] [Related]
13. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Santoro MV; Zygadlo J; Giordano W; Banchio E Plant Physiol Biochem; 2011 Oct; 49(10):1177-82. PubMed ID: 21843946 [TBL] [Abstract][Full Text] [Related]
14. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Santoro MV; Cappellari LR; Giordano W; Banchio E Plant Biol (Stuttg); 2015 Nov; 17(6):1218-26. PubMed ID: 26012535 [TBL] [Abstract][Full Text] [Related]
15. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha x piperita L.). Rohloff J; Dragland S; Mordal R; Iversen TH J Agric Food Chem; 2005 May; 53(10):4143-8. PubMed ID: 15884852 [TBL] [Abstract][Full Text] [Related]
16. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield. Karkanis A; Lykas C; Liava V; Bezou A; Petropoulos S; Tsiropoulos N J Sci Food Agric; 2018 Jan; 98(1):43-50. PubMed ID: 28503740 [TBL] [Abstract][Full Text] [Related]
17. Pepermint (Mentha piperita L.) growth and biochemical properties affected by magnetized saline water. Alavi SA; Ghehsareh AM; Soleymani A; Panahpour E; Mozafari M Ecotoxicol Environ Saf; 2020 Sep; 201():110775. PubMed ID: 32535365 [TBL] [Abstract][Full Text] [Related]
18. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Zhang D; Jiang S; Pan J; Kong X; Zhou Y; Liu Y; Li D Plant Biol (Stuttg); 2014 May; 16(3):558-70. PubMed ID: 23952812 [TBL] [Abstract][Full Text] [Related]
19. Monoterpene composition of essential oil from peppermint (Mentha x piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. Rohloff J J Agric Food Chem; 1999 Sep; 47(9):3782-6. PubMed ID: 10552722 [TBL] [Abstract][Full Text] [Related]
20. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Mahmoud SS; Williams M; Croteau R Phytochemistry; 2004 Mar; 65(5):547-54. PubMed ID: 15003417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]