These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 26631184)
1. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184 [TBL] [Abstract][Full Text] [Related]
2. Combined Cell Surface Display of β-d-Glucosidase (BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose Reductase (XR) in Saccharomyces cerevisiae Enhance Cellobiose/Xylose Coutilization for Xylitol Bioproduction from Lignocellulosic Biomass. Guirimand GGY; Bamba T; Matsuda M; Inokuma K; Morita K; Kitada Y; Kobayashi Y; Yukawa T; Sasaki K; Ogino C; Hasunuma T; Kondo A Biotechnol J; 2019 Sep; 14(9):e1800704. PubMed ID: 31283105 [TBL] [Abstract][Full Text] [Related]
3. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
4. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
5. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate. Mussatto SI; Dragone G; Roberto IC Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723 [TBL] [Abstract][Full Text] [Related]
6. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Zahed O; Jouzani GS; Abbasalizadeh S; Khodaiyan F; Tabatabaei M Folia Microbiol (Praha); 2016 May; 61(3):179-89. PubMed ID: 26354791 [TBL] [Abstract][Full Text] [Related]
7. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Gurpilhares DB; Hasmann FA; Pessoa A; Roberto IC J Ind Microbiol Biotechnol; 2009 Jan; 36(1):87-93. PubMed ID: 18830730 [TBL] [Abstract][Full Text] [Related]
8. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Sasaki K; Sasaki D; Sakihama Y; Teramura H; Yamada R; Hasunuma T; Ogino C; Kondo A Bioresour Technol; 2013 Nov; 147():84-88. PubMed ID: 23994307 [TBL] [Abstract][Full Text] [Related]
9. Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Silva CJ; Roberto IC Lett Appl Microbiol; 2001 Apr; 32(4):248-52. PubMed ID: 11298935 [TBL] [Abstract][Full Text] [Related]
10. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Kumar S; Dheeran P; Singh SP; Mishra IM; Adhikari DK Bioprocess Biosyst Eng; 2015 Jan; 38(1):39-47. PubMed ID: 25090978 [TBL] [Abstract][Full Text] [Related]
11. Effect of inoculum level of xylitol production from rice straw hemicellulose hydrolysate by Candida guilliermondii. Roberto IC; Sato S; de Mancilha IM J Ind Microbiol; 1996 Jun; 16(6):348-50. PubMed ID: 8987492 [TBL] [Abstract][Full Text] [Related]
12. Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. Mussatto SI; Roberto IC J Appl Microbiol; 2003; 95(2):331-7. PubMed ID: 12859766 [TBL] [Abstract][Full Text] [Related]
13. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
14. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene. Songdech P; Intasit R; Yingchutrakul Y; Butkinaree C; Ratanakhanokchai K; Soontorngun N Microb Cell Fact; 2022 Mar; 21(1):32. PubMed ID: 35248023 [TBL] [Abstract][Full Text] [Related]
15. Activity of xylose reductase from Candida mogii grown in media containing different concentrations of rice straw hydrolysate. Mayerhoff ZD; Roberto IC; Franco TT Appl Biochem Biotechnol; 2001; 91-93():729-37. PubMed ID: 11963901 [TBL] [Abstract][Full Text] [Related]
16. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
17. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae. Kobayashi J; Sasaki D; Bamba T; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2019 Feb; 103(3):1243-1254. PubMed ID: 30448906 [TBL] [Abstract][Full Text] [Related]
18. Biosynthetic strategies to produce xylitol: an economical venture. Xu Y; Chi P; Bilal M; Cheng H Appl Microbiol Biotechnol; 2019 Jul; 103(13):5143-5160. PubMed ID: 31101942 [TBL] [Abstract][Full Text] [Related]
20. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate. Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]