BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26631463)

  • 1. Can Neural Activity Propagate by Endogenous Electrical Field?
    Qiu C; Shivacharan RS; Zhang M; Durand DM
    J Neurosci; 2015 Dec; 35(48):15800-11. PubMed ID: 26631463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields.
    Shivacharan RS; Chiang CC; Zhang M; Gonzalez-Reyes LE; Durand DM
    Exp Neurol; 2019 Jul; 317():119-128. PubMed ID: 30776338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling.
    Chiang CC; Shivacharan RS; Wei X; Gonzalez-Reyes LE; Durand DM
    J Physiol; 2019 Jan; 597(1):249-269. PubMed ID: 30295923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission.
    Zhang M; Ladas TP; Qiu C; Shivacharan RS; Gonzalez-Reyes LE; Durand DM
    J Neurosci; 2014 Jan; 34(4):1409-19. PubMed ID: 24453330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field effects in hyperexcitable neural tissue: a review.
    Durand DM
    Radiat Prot Dosimetry; 2003; 106(4):325-31. PubMed ID: 14690275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of traveling waves in the Mammalian cortex.
    Richardson KA; Schiff SJ; Gluckman BJ
    Phys Rev Lett; 2005 Jan; 94(2):028103. PubMed ID: 15698234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural recruitment by ephaptic coupling in epilepsy.
    Shivacharan RS; Chiang CC; Wei X; Subramanian M; Couturier NH; Pakalapati N; Durand DM
    Epilepsia; 2021 Jul; 62(7):1505-1517. PubMed ID: 33979453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling extracellular space electrodiffusion during Leão's spreading depression.
    Almeida AC; Texeira HZ; Duarte MA; Infantosi AF
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):450-8. PubMed ID: 15000376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of distributed transmission speeds on propagating activity in neural populations.
    Hutt A; Atay FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021906. PubMed ID: 16605361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo.
    Subramanian M; Chiang CC; Couturier NH; Durand DM
    Exp Neurol; 2022 Aug; 354():114109. PubMed ID: 35551899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action potential fidelity during normal and epileptiform activity in paired soma-axon recordings from rat hippocampus.
    Meeks JP; Jiang X; Mennerick S
    J Physiol; 2005 Jul; 566(Pt 2):425-41. PubMed ID: 15890699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields.
    Deans JK; Powell AD; Jefferys JG
    J Physiol; 2007 Sep; 583(Pt 2):555-65. PubMed ID: 17599962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of electrical interactions in synchronization of epileptiform bursts.
    Dudek FE; Snow RW; Taylor CP
    Adv Neurol; 1986; 44():593-617. PubMed ID: 3706022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow moving neural source in the epileptic hippocampus can mimic progression of human seizures.
    Chiang CC; Wei X; Ananthakrishnan AK; Shivacharan RS; Gonzalez-Reyes LE; Zhang M; Durand DM
    Sci Rep; 2018 Jan; 8(1):1564. PubMed ID: 29367722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites.
    Bernard C; Johnston D
    J Neurophysiol; 2003 Sep; 90(3):1807-16. PubMed ID: 12966178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of spatially inhomogeneous extracellular electric fields on neurons.
    Anastassiou CA; Montgomery SM; Barahona M; Buzsáki G; Koch C
    J Neurosci; 2010 Feb; 30(5):1925-36. PubMed ID: 20130201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly developed blockers of the M-current do not reduce spike frequency adaptation in cultured mouse sympathetic neurons.
    Romero M; Reboreda A; Sánchez E; Lamas JA
    Eur J Neurosci; 2004 May; 19(10):2693-702. PubMed ID: 15147303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of traveling waves to transient inputs in neural fields.
    Kilpatrick ZP; Ermentrout B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021910. PubMed ID: 22463247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junctions facilitate propagation of synchronous firing in the cortical neural population: a numerical simulation study.
    Shinozaki T; Naruse Y; Câteau H
    Neural Netw; 2013 Oct; 46():91-8. PubMed ID: 23711746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.