These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26631536)
1. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Gao G; Zhang Q; Cheng XB; Shapter JG; Yin T; Sun R; Cui D Sci Rep; 2015 Dec; 5():17553. PubMed ID: 26631536 [TBL] [Abstract][Full Text] [Related]
2. CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior. Cheng J; Wang B; Park CM; Wu Y; Huang H; Nie F Chemistry; 2013 Jul; 19(30):9866-74. PubMed ID: 23852958 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation. Bao S; Tu M; Huang H; Wang C; Chen Y; Sun B; Xu B J Colloid Interface Sci; 2021 Nov; 601():283-293. PubMed ID: 34087591 [TBL] [Abstract][Full Text] [Related]
4. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Ma C; Zhang W; He YS; Gong Q; Che H; Ma ZF Nanoscale; 2016 Feb; 8(7):4121-6. PubMed ID: 26866581 [TBL] [Abstract][Full Text] [Related]
5. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841 [TBL] [Abstract][Full Text] [Related]
6. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. Zhang J; Wang K; Xu Q; Zhou Y; Cheng F; Guo S ACS Nano; 2015 Mar; 9(3):3369-76. PubMed ID: 25716070 [TBL] [Abstract][Full Text] [Related]
7. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries. Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383 [TBL] [Abstract][Full Text] [Related]
8. Ultrafine ternary metal oxide particles with carbon nanotubes: a metal-organic-framework-based approach and superior lithium-storage performance. Tang X; Liang M; Zhang Y; Sun W; Wang Y Dalton Trans; 2019 Mar; 48(13):4413-4419. PubMed ID: 30865194 [TBL] [Abstract][Full Text] [Related]
9. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries. Zhang W; Li X; Liang J; Tang K; Zhu Y; Qian Y Nanoscale; 2016 Feb; 8(8):4733-41. PubMed ID: 26859122 [TBL] [Abstract][Full Text] [Related]
10. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
11. Necklace-like ferroferric oxide (Fe Liu Y; Chen J; Liu Z; Xu H; Shi Z; Yang Q; Hu GH; Xiong C J Colloid Interface Sci; 2020 Sep; 576():119-126. PubMed ID: 32408161 [TBL] [Abstract][Full Text] [Related]
12. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. Hao F; Zhang Z; Yin L ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311 [TBL] [Abstract][Full Text] [Related]
13. Supercritical carbon dioxide anchored Fe₃O₄ nanoparticles on graphene foam and lithium battery performance. Hu X; Ma M; Zeng M; Sun Y; Chen L; Xue Y; Zhang T; Ai X; Mendes RG; Rümmeli MH; Fu L ACS Appl Mater Interfaces; 2014 Dec; 6(24):22527-33. PubMed ID: 25438281 [TBL] [Abstract][Full Text] [Related]
14. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery. Ming H; Ming J; Oh SM; Tian S; Zhou Q; Huang H; Sun YK; Zheng J ACS Appl Mater Interfaces; 2014 Sep; 6(17):15499-509. PubMed ID: 25141154 [TBL] [Abstract][Full Text] [Related]
15. One-pot synthesis of in-situ carbon-coated Fe Liu M; Jin H; Uchaker E; Xie Z; Wang Y; Cao G; Hou S; Li J Nanotechnology; 2017 Apr; 28(15):155603. PubMed ID: 28211792 [TBL] [Abstract][Full Text] [Related]
16. One-Pot Synthesis of Pomegranate-Structured Fe3 O4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries. He D; Li L; Bai F; Zha C; Shen L; Kung HH; Bao N Chemistry; 2016 Mar; 22(13):4454-9. PubMed ID: 26879124 [TBL] [Abstract][Full Text] [Related]
17. Nanocrystal-constructed mesoporous single-crystalline Co₃O₄ nanobelts with superior rate capability for advanced lithium-ion batteries. Huang H; Zhu W; Tao X; Xia Y; Yu Z; Fang J; Gan Y; Zhang W ACS Appl Mater Interfaces; 2012 Nov; 4(11):5974-80. PubMed ID: 23054348 [TBL] [Abstract][Full Text] [Related]
18. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures toward High-Performance Lithium-Ion Batteries. Wang J; Zhang C; Kang F ACS Appl Mater Interfaces; 2015 May; 7(17):9185-94. PubMed ID: 25871883 [TBL] [Abstract][Full Text] [Related]
20. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. He C; Wu S; Zhao N; Shi C; Liu E; Li J ACS Nano; 2013 May; 7(5):4459-69. PubMed ID: 23614734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]