These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26631578)

  • 1. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.
    Raju K; Ozoemena KI
    Sci Rep; 2015 Dec; 5():17629. PubMed ID: 26631578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors.
    Wu C; Lu X; Peng L; Xu K; Peng X; Huang J; Yu G; Xie Y
    Nat Commun; 2013; 4():2431. PubMed ID: 24026224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings.
    Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK
    ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors.
    Li W; Xin L; Xu X; Liu Q; Zhang M; Ding S; Zhao M; Lou X
    Sci Rep; 2015 Mar; 5():9277. PubMed ID: 25787769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance.
    Kong M; Wang Z; Wang W; Ma M; Liu D; Hao S; Kong R; Du G; Asiri AM; Yao Y; Sun X
    Chemistry; 2017 Mar; 23(18):4435-4441. PubMed ID: 28295716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals.
    Peng S; Yu L; Lan B; Sun M; Cheng G; Liao S; Cao H; Deng Y
    Nanotechnology; 2016 Dec; 27(50):505404. PubMed ID: 27875337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors.
    Yang H; Xu H; Li M; Zhang L; Huang Y; Hu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1774-9. PubMed ID: 26709837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors.
    Qiu Y; Zhao Y; Yang X; Li W; Wei Z; Xiao J; Leung SF; Lin Q; Wu H; Zhang Y; Fan Z; Yang S
    Nanoscale; 2014 Apr; 6(7):3626-31. PubMed ID: 24562413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids.
    Su H; Xiong T; Tan Q; Yang F; Appadurai PBS; Afuwape AA; Balogun MJT; Huang Y; Guo K
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Wire-Type Asymmetric Pseudocapacitor Achieving High Volumetric Energy/Power Densities and Ultralong Cycling Stability of 100 000 Times.
    Gui Q; Wu L; Li Y; Liu J
    Adv Sci (Weinh); 2019 May; 6(10):1802067. PubMed ID: 31131191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials.
    Li HB; Yu MH; Wang FX; Liu P; Liang Y; Xiao J; Wang CX; Tong YX; Yang GW
    Nat Commun; 2013; 4():1894. PubMed ID: 23695688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.
    Shi M; Yang C; Song X; Liu J; Zhao L; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2017 May; 9(20):17051-17059. PubMed ID: 28481083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors.
    Chen Y; Liu B; Liu Q; Wang J; Li Z; Jing X; Liu L
    Nanoscale; 2015 Oct; 7(37):15159-67. PubMed ID: 26257017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage.
    Chen Y; Zhang X; Xie Z
    ACS Nano; 2015 Aug; 9(8):8054-63. PubMed ID: 26259167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors.
    Zhou C; Liu J
    Nanotechnology; 2014 Jan; 25(3):035402. PubMed ID: 24356470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors.
    Wang C; Sung K; Zhu JZJ; Qu S; Bao J; Chang X; Katsuyama Y; Yang Z; Zhang C; Huang A; Kroes BC; El-Kady MF; Kaner RB
    Mater Horiz; 2024 Feb; 11(3):688-699. PubMed ID: 37990914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors.
    Yang Y; Zhang D; Liu Y; Shen L; Zhu T; Xu X; Zheng J; Gong X
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34168-34177. PubMed ID: 34260215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.