These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26631641)

  • 1. Decoding the view expectation during learned maze navigation from human fronto-parietal network.
    Shikauchi Y; Ishii S
    Sci Rep; 2015 Dec; 5():17648. PubMed ID: 26631641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust encoding of scene anticipation during human spatial navigation.
    Shikauchi Y; Ishii S
    Sci Rep; 2016 Nov; 6():37599. PubMed ID: 27874089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions.
    Compton DM; Griffith HR; McDaniel WF; Foster RA; Davis BK
    Neurobiol Learn Mem; 1997 Sep; 68(2):117-32. PubMed ID: 9322255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI.
    Rodriguez PF
    Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of rat posterior parietal cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (Carousel).
    Svoboda J; Telensky P; Blahna K; Vodicka M; Stuchlik A
    Behav Brain Res; 2015 Oct; 292():1-9. PubMed ID: 25986405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural decoding of goal locations in spatial navigation in humans with fMRI.
    Rodriguez PF
    Hum Brain Mapp; 2010 Mar; 31(3):391-7. PubMed ID: 19722170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze.
    Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E
    Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions.
    Weniger G; Ruhleder M; Wolf S; Lange C; Irle E
    Neuropsychologia; 2009 Jan; 47(1):59-69. PubMed ID: 18789955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospective representation of navigational goals in the human hippocampus.
    Brown TI; Carr VA; LaRocque KF; Favila SE; Gordon AM; Bowles B; Bailenson JN; Wagner AD
    Science; 2016 Jun; 352(6291):1323-6. PubMed ID: 27284194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain activation during human navigation: gender-different neural networks as substrate of performance.
    Grön G; Wunderlich AP; Spitzer M; Tomczak R; Riepe MW
    Nat Neurosci; 2000 Apr; 3(4):404-8. PubMed ID: 10725932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events.
    Burgess N; Maguire EA; Spiers HJ; O'Keefe J
    Neuroimage; 2001 Aug; 14(2):439-53. PubMed ID: 11467917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parietal cortex codes for egocentric space beyond the field of view.
    Schindler A; Bartels A
    Curr Biol; 2013 Jan; 23(2):177-82. PubMed ID: 23260468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural foundations of emerging route knowledge in complex spatial environments.
    Wolbers T; Weiller C; Büchel C
    Brain Res Cogn Brain Res; 2004 Nov; 21(3):401-11. PubMed ID: 15511655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.
    Diwadkar VA; Carpenter PA; Just MA
    Neuroimage; 2000 Jul; 12(1):85-99. PubMed ID: 10875905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline.
    Iacoboni M; Lieberman MD; Knowlton BJ; Molnar-Szakacs I; Moritz M; Throop CJ; Fiske AP
    Neuroimage; 2004 Mar; 21(3):1167-73. PubMed ID: 15006683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of prefrontal cortex and posterior parietal cortex in task switching.
    Sohn MH; Ursu S; Anderson JR; Stenger VA; Carter CS
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13448-53. PubMed ID: 11069306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Right fronto-parietal involvement in monitoring spatial trajectories.
    Vallesi A; Crescentini C
    Neuroimage; 2011 Jul; 57(2):558-64. PubMed ID: 21571078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.