BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1151 related articles for article (PubMed ID: 26631657)

  • 1. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 Apr; 113(14):4538-43. PubMed ID: 19253989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening.
    Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2447-64. PubMed ID: 26616625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting aqueous free energies of solvation as functions of temperature.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Mar; 110(11):5665-75. PubMed ID: 16539512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell.
    Liu J; Kelly CP; Goren AC; Marenich AV; Cramer CJ; Truhlar DG; Zhan CG
    J Chem Theory Comput; 2010 Mar; 6(4):1109-1117. PubMed ID: 20419072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio procedure for aqueous-phase pKa calculation: the acidity of nitrous acid.
    da Silva G; Kennedy EM; Dlugogorski BZ
    J Phys Chem A; 2006 Oct; 110(39):11371-6. PubMed ID: 17004748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-Extremum Model for Short-Range Contributions to Hydration Free Energy.
    Pomogaeva A; Chipman DM
    J Chem Theory Comput; 2011 Dec; 7(12):3952-60. PubMed ID: 26598341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of Anisotropic Potentials in Modeling Water and Free Energies of Hydration.
    Karamertzanis PG; Raiteri P; Galindo A
    J Chem Theory Comput; 2010 May; 6(5):1590-607. PubMed ID: 26615693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model.
    Corbeil CR; Sulea T; Purisima EO
    J Chem Theory Comput; 2010 May; 6(5):1622-37. PubMed ID: 26615695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of a temperature-dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2008 Mar; 112(10):3024-39. PubMed ID: 18281971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration in discrete water (II): from neutral to charged solutes.
    Setny P
    J Phys Chem B; 2015 May; 119(19):5970-8. PubMed ID: 25896299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite method for implicit representation of solvent in dimethyl sulfoxide and acetonitrile.
    Pomogaeva A; Chipman DM
    J Phys Chem A; 2015 May; 119(21):5173-80. PubMed ID: 25456158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.