These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26631785)

  • 1. Benchmark Data for Noncovalent Interactions in HCOOH···Benzene Complexes and Their Use for Validation of Density Functionals.
    Zhao Y; Ng HT; Hanson E
    J Chem Theory Comput; 2009 Oct; 5(10):2726-33. PubMed ID: 26631785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods.
    Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L
    J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods.
    Zhao Y; Truhlar DG
    J Chem Theory Comput; 2009 Feb; 5(2):324-33. PubMed ID: 26610108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-phosphine bond strengths of the transition metals: a challenge for DFT.
    Minenkov Y; Occhipinti G; Jensen VR
    J Phys Chem A; 2009 Oct; 113(43):11833-44. PubMed ID: 19736907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods.
    Minenkov Y; Chermak E; Cavallo L
    J Chem Theory Comput; 2016 Apr; 12(4):1542-60. PubMed ID: 27002380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene.
    Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Density Functionals for Activation Energies of Zr-Mediated Reactions.
    Sun Y; Chen H
    J Chem Theory Comput; 2013 Nov; 9(11):4735-43. PubMed ID: 26583392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of DLPNO-CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes.
    Minenkov Y; Chermak E; Cavallo L
    J Chem Theory Comput; 2015 Oct; 11(10):4664-76. PubMed ID: 26574257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals.
    Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD
    J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intricacies of Describing Weak Interactions Involving Halogen Atoms within Density Functional Theory.
    Doemer M; Tavernelli I; Rothlisberger U
    J Chem Theory Comput; 2013 Feb; 9(2):955-64. PubMed ID: 26588739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies.
    DiLabio GA; Johnson ER; Otero-de-la-Roza A
    Phys Chem Chem Phys; 2013 Aug; 15(31):12821-8. PubMed ID: 23803877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules.
    Antony J; Grimme S
    Phys Chem Chem Phys; 2006 Dec; 8(45):5287-93. PubMed ID: 19810407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization of a B3LYP specific correction for non-covalent interactions and basis set superposition error on a gigantic dataset of CCSD(T) quality non-covalent interaction energies.
    Schneebeli ST; Bochevarov AD; Friesner RA
    J Chem Theory Comput; 2011 Mar; 7(3):658-668. PubMed ID: 22058661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.
    Ess DH; Cook TC
    J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved density functionals for water.
    Dahlke EE; Truhlar DG
    J Phys Chem B; 2005 Aug; 109(33):15677-83. PubMed ID: 16852988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory.
    Brauer B; Kesharwani MK; Kozuch S; Martin JM
    Phys Chem Chem Phys; 2016 Aug; 18(31):20905-25. PubMed ID: 26950084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study.
    de Azevedo Santos L; Ramalho TC; Hamlin TA; Bickelhaupt FM
    J Comput Chem; 2021 Apr; 42(10):688-698. PubMed ID: 33543482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.