These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26631905)

  • 21. Air-assisted liquid-liquid microextraction using floating organic droplet solidification for simultaneous extraction and spectrophotometric determination of some drugs in biological samples through chemometrics methods.
    Farahmand F; Ghasemzadeh B; Naseri A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():72-79. PubMed ID: 28692870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design.
    Asati A; Satyanarayana GNV; Patel DK
    J Chromatogr A; 2017 Sep; 1513():157-171. PubMed ID: 28735710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography.
    Wu Q; Chang Q; Wu C; Rao H; Zeng X; Wang C; Wang Z
    J Chromatogr A; 2010 Mar; 1217(11):1773-8. PubMed ID: 20138627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of organophosphorous pesticides in water using in-syringe ultrasound-assisted emulsification and gas chromatography with electron-capture detection.
    Su YS; Jen JF
    J Chromatogr A; 2010 Jul; 1217(31):5043-9. PubMed ID: 20580004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of Cd and Ni in tea and water samples.
    Ezoddin M; Taghizadeh T; Majidi B
    Environ Technol; 2014; 35(17-20):2401-9. PubMed ID: 25145194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of volatile organic compounds in water using ultrasound-assisted emulsification microextraction followed by gas chromatography.
    Leong MI; Huang SD
    J Sep Sci; 2012 Mar; 35(5-6):688-94. PubMed ID: 22271628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a home-made extraction device for vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with lighter than water organic solvents.
    Yang ZH; Wang P; Zhao WT; Zhou ZQ; Liu DH
    J Chromatogr A; 2013 Jul; 1300():58-63. PubMed ID: 23474198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vortex-assisted micro-solid-phase extraction followed by low-density solvent based dispersive liquid-liquid microextraction for the fast and efficient determination of phthalate esters in river water samples.
    Guo L; Lee HK
    J Chromatogr A; 2013 Jul; 1300():24-30. PubMed ID: 23374370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissolved carbon dioxide flotation: an effective way for phase separation in emulsification microextraction method.
    Molaei S; Saleh A; Ghoulipour V; Seidi S
    J Chromatogr A; 2015 Apr; 1388():280-5. PubMed ID: 25728662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of ultrasound-assisted emulsification-micro-extraction for the analysis of organochlorine pesticides in waters.
    Ozcan S; Tor A; Aydin ME
    Water Res; 2009 Sep; 43(17):4269-77. PubMed ID: 19577269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of organophosphorus pesticides and metabolites in cereal-based baby foods and wheat flour by means of ultrasound-assisted extraction and hollow-fiber liquid-phase microextraction prior to gas chromatography with nitrogen phosphorus detection.
    González-Curbelo MÁ; Hernández-Borges J; Borges-Miquel TM; Rodríguez-Delgado MÁ
    J Chromatogr A; 2013 Oct; 1313():166-74. PubMed ID: 23809845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents.
    Najafi NM; Tavakoli H; Abdollahzadeh Y; Alizadeh R
    Anal Chim Acta; 2012 Feb; 714():82-8. PubMed ID: 22244140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples.
    Albishri HM; Aldawsari NA; El-Hady DA
    Electrophoresis; 2016 Oct; 37(19):2462-2469. PubMed ID: 27338127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of dispersive solid phase extraction with solidification organic drop-dispersive liquid-liquid microextraction based on deep eutectic solvent for extraction of organophosphorous pesticides from edible oil samples.
    Zahiri E; Khandaghi J; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2020 Sep; 1627():461390. PubMed ID: 32823096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electro membrane extraction followed by low-density solvent based ultrasound-assisted emulsification microextraction combined with derivatization for determining chlorophenols and analysis by gas chromatography-mass spectrometry.
    Guo L; Lee HK
    J Chromatogr A; 2012 Jun; 1243():14-22. PubMed ID: 22579488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemometric assisted ultrasound leaching-solid phase extraction followed by dispersive-solidification liquid-liquid microextraction for determination of organophosphorus pesticides in soil samples.
    Ahmadi K; Abdollahzadeh Y; Asadollahzadeh M; Hemmati A; Tavakoli H; Torkaman R
    Talanta; 2015 May; 137():167-73. PubMed ID: 25770621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of nitrophenols using ultrahigh pressure liquid chromatography and a new manual shaking-enhanced, ultrasound-assisted emulsification microextraction method based on solidification of a floating organic droplet.
    Chung RJ; Leong MI; Huang SD
    J Chromatogr A; 2012 Jul; 1246():55-61. PubMed ID: 22386254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of dispersive liquid-liquid microextraction based on the solidification of floating organic droplets using an orthogonal array design and its application for the determination of fungicide concentrations in environmental water samples.
    Yang X; Yang M; Hou B; Li S; Zhang Y; Lu R; Zhang S
    J Sep Sci; 2014 Aug; 37(15):1996-2001. PubMed ID: 24824837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.