These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 26631935)
1. Dual-responsive vesicles formed by an amphiphile containing two tetrathiafulvalene units in aqueous solution. Wang XJ; Xing LB; Chen B; Quan Y; Tung CH; Wu LZ Org Biomol Chem; 2016 Jan; 14(1):65-8. PubMed ID: 26631935 [TBL] [Abstract][Full Text] [Related]
2. Multistimuli responsive micelles formed by a tetrathiafulvalene-functionalized amphiphile. Wang XJ; Xing LB; Wang F; Wang GX; Chen B; Tung CH; Wu LZ Langmuir; 2011 Jul; 27(14):8665-71. PubMed ID: 21644575 [TBL] [Abstract][Full Text] [Related]
3. Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene. Hartlieb KJ; Liu WG; Fahrenbach AC; Blackburn AK; Frasconi M; Hafezi N; Dey SK; Sarjeant AA; Stern CL; Goddard WA; Stoddart JF Chemistry; 2016 Feb; 22(8):2736-45. PubMed ID: 26784535 [TBL] [Abstract][Full Text] [Related]
4. Preparation of a responsive carbohydrate-coated biointerface based on graphene/azido-terminated tetrathiafulvalene nanohybrid material. Kaminska I; Barras A; Coffinier Y; Lisowski W; Roy S; Niedziolka-Jonsson J; Woisel P; Lyskawa J; Opallo M; Siriwardena A; Boukherroub R; Szunerits S ACS Appl Mater Interfaces; 2012 Oct; 4(10):5386-93. PubMed ID: 22970832 [TBL] [Abstract][Full Text] [Related]
5. Vesicle self-assembly by tetrathiafulvalene derivatives in both polar and nonpolar solvents and pseudo-rotaxane mediated vesicle-to-microtube transformation. Zhang KD; Wang GT; Zhao X; Jiang XK; Li ZT Langmuir; 2010 May; 26(10):6878-82. PubMed ID: 20397717 [TBL] [Abstract][Full Text] [Related]
8. Construction of a photo-responsive supra-amphiphile based on a tetracationic cyclobis(paraquat-p-phenylene) and an azobenzene-containing guest in water. Shao L; Hua B; Yang J; Yu G Chem Commun (Camb); 2016 May; 52(39):6573-6. PubMed ID: 27108781 [TBL] [Abstract][Full Text] [Related]
9. Quadruple switching of pleated foldamers of tetrathiafulvalene-bipyridinium alternating dynamic covalent polymers. Chen L; Wang H; Zhang DW; Zhou Y; Li ZT Angew Chem Int Ed Engl; 2015 Mar; 54(13):4028-31. PubMed ID: 25651411 [TBL] [Abstract][Full Text] [Related]
10. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane. Jensen M; Kristensen R; Andersen SS; Bendixen D; Jeppesen JO Chemistry; 2020 May; 26(28):6165-6175. PubMed ID: 32049376 [TBL] [Abstract][Full Text] [Related]
11. Tetrathiafulvalene hetero radical cation dimerization in a redox-active [2]catenane. Wang C; Dyar SM; Cao D; Fahrenbach AC; Horwitz N; Colvin MT; Carmieli R; Stern CL; Dey SK; Wasielewski MR; Stoddart JF J Am Chem Soc; 2012 Nov; 134(46):19136-45. PubMed ID: 23140138 [TBL] [Abstract][Full Text] [Related]
12. Binding studies between triethylene glycol-substituted monopyrrolotetrathiafulvalene derivatives and cyclobis(paraquat-p-phenylene). Nygaard S; Hansen CN; Jeppesen JO J Org Chem; 2007 Mar; 72(5):1617-26. PubMed ID: 17256990 [TBL] [Abstract][Full Text] [Related]
13. A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. Asakawa M; Ashton PR; Balzani V; Credi A; Hamers C; Mattersteig G; Montalti M; Shipway AN; Spencer N; Stoddart JF; Tolley MS; Venturi M; White AJP; Williams DJ Angew Chem Int Ed Engl; 1998 Feb; 37(3):333-337. PubMed ID: 29711270 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic studies of isomeric [2]rotaxanes consisting of two different tetrathiafulvalene units reveal that the movement of cyclobis(paraquat- Jensen SK; Neumann MS; Frederiksen R; Skavenborg ML; Larsen MC; Wessel SE; Jeppesen JO Chem Sci; 2023 Nov; 14(43):12366-12378. PubMed ID: 37969595 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory studies of the [2]rotaxane component of the Stoddart-heath molecular switch. Jang YH; Hwang S; Kim YH; Jang SS; Goddard WA J Am Chem Soc; 2004 Oct; 126(39):12636-45. PubMed ID: 15453797 [TBL] [Abstract][Full Text] [Related]
17. An Electrochromic Tristable Molecular Switch. Sun J; Wu Y; Wang Y; Liu Z; Cheng C; Hartlieb KJ; Wasielewski MR; Stoddart JF J Am Chem Soc; 2015 Oct; 137(42):13484-7. PubMed ID: 26439892 [TBL] [Abstract][Full Text] [Related]
18. Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices. Kim H; Goddard WA; Jang SS; Dichtel WR; Heath JR; Stoddart JF J Phys Chem A; 2009 Mar; 113(10):2136-43. PubMed ID: 19226131 [TBL] [Abstract][Full Text] [Related]
19. A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. Wolf R; Asakawa M; Ashton PR; Gómez-López M; Hamers C; Menzer S; Parsons IW; Spencer N; Stoddart JF; Tolley MS; Williams DJ Angew Chem Int Ed Engl; 1998 Apr; 37(7):975-979. PubMed ID: 29711472 [TBL] [Abstract][Full Text] [Related]
20. Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory. Coskun A; Wesson PJ; Klajn R; Trabolsi A; Fang L; Olson MA; Dey SK; Grzybowski BA; Stoddart JF J Am Chem Soc; 2010 Mar; 132(12):4310-20. PubMed ID: 20218598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]