These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Jo YI; Suresh B; Kim H; Ramakrishna S Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948 [TBL] [Abstract][Full Text] [Related]
23. A Guide to Computational Tools and Design Strategies for Genome Editing Experiments in Zebrafish Using CRISPR/Cas9. Prykhozhij SV; Rajan V; Berman JN Zebrafish; 2016 Feb; 13(1):70-3. PubMed ID: 26683213 [TBL] [Abstract][Full Text] [Related]
24. Applications of CRISPR-Cas systems in neuroscience. Heidenreich M; Zhang F Nat Rev Neurosci; 2016 Jan; 17(1):36-44. PubMed ID: 26656253 [TBL] [Abstract][Full Text] [Related]
25. The Bacterial Origins of the CRISPR Genome-Editing Revolution. Sontheimer EJ; Barrangou R Hum Gene Ther; 2015 Jul; 26(7):413-24. PubMed ID: 26078042 [TBL] [Abstract][Full Text] [Related]
26. CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. Rajendran SR; Yau YY; Pandey D; Kumar A OMICS; 2015 May; 19(5):261-75. PubMed ID: 25871888 [TBL] [Abstract][Full Text] [Related]
27. Programmable DNA cleavage in vitro by Cas9. Karvelis T; Gasiunas G; Siksnys V Biochem Soc Trans; 2013 Dec; 41(6):1401-6. PubMed ID: 24256227 [TBL] [Abstract][Full Text] [Related]
28. CRISPR: gene editing is just the beginning. Ledford H Nature; 2016 Mar; 531(7593):156-9. PubMed ID: 26961639 [No Abstract] [Full Text] [Related]
29. The CRISPR-Cas system for plant genome editing: advances and opportunities. Kumar V; Jain M J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501 [TBL] [Abstract][Full Text] [Related]
30. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Kaulich M; Dowdy SF Nucleic Acid Ther; 2015 Dec; 25(6):287-96. PubMed ID: 26540648 [TBL] [Abstract][Full Text] [Related]
31. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Kennedy EM; Cullen BR Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096 [TBL] [Abstract][Full Text] [Related]
32. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121 [TBL] [Abstract][Full Text] [Related]
34. Slouching toward policy: lazy bioethics and the perils of science fiction. Guyer RL; Moreno JD Am J Bioeth; 2004; 4(4):W14-7. PubMed ID: 16192175 [TBL] [Abstract][Full Text] [Related]
35. Dual use and the ethical responsibility of scientists. Ehni HJ Arch Immunol Ther Exp (Warsz); 2008; 56(3):147-52. PubMed ID: 18512027 [TBL] [Abstract][Full Text] [Related]
36. A code of ethics for the life sciences. Jones NL Sci Eng Ethics; 2007 Mar; 13(1):25-43. PubMed ID: 17703607 [TBL] [Abstract][Full Text] [Related]
37. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Pellagatti A; Dolatshad H; Valletta S; Boultwood J Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103 [TBL] [Abstract][Full Text] [Related]
39. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research. Corley EA; Kim Y; Scheufele DA Sci Eng Ethics; 2016 Feb; 22(1):111-32. PubMed ID: 25721444 [TBL] [Abstract][Full Text] [Related]
40. Harnessing CRISPR-Cas systems for bacterial genome editing. Selle K; Barrangou R Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]