BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 26632489)

  • 1. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
    Lin CY; Su YH
    Dev Biol; 2016 Jan; 409(2):420-8. PubMed ID: 26632489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
    Cui M; Lin CY; Su YH
    Brief Funct Genomics; 2017 Sep; 16(5):309-318. PubMed ID: 28605407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
    Liu D; Awazu A; Sakuma T; Yamamoto T; Sakamoto N
    Dev Growth Differ; 2019 Aug; 61(6):378-388. PubMed ID: 31359433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing CRISPR/Cas9-based gene manipulation in echinoderms.
    Oulhen N; Pieplow C; Perillo M; Gregory P; Wessel GM
    Dev Biol; 2022 Oct; 490():117-124. PubMed ID: 35917936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted mutagenesis in sea urchin embryos using TALENs.
    Hosoi S; Sakuma T; Sakamoto N; Yamamoto T
    Dev Growth Differ; 2014 Jan; 56(1):92-7. PubMed ID: 24262038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin,
    Sakamoto N; Watanabe K; Awazu A; Yamamoto T
    Zoolog Sci; 2024 Apr; 41(2):159-166. PubMed ID: 38587910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).
    Aluru N; Karchner SI; Franks DG; Nacci D; Champlin D; Hahn ME
    Aquat Toxicol; 2015 Jan; 158():192-201. PubMed ID: 25481785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient genome editing in zebrafish using a CRISPR-Cas system.
    Hwang WY; Fu Y; Reyon D; Maeder ML; Tsai SQ; Sander JD; Peterson RT; Yeh JR; Joung JK
    Nat Biotechnol; 2013 Mar; 31(3):227-9. PubMed ID: 23360964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.
    Xie K; Minkenberg B; Yang Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3570-5. PubMed ID: 25733849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation.
    Fan D; Liu T; Li C; Jiao B; Li S; Hou Y; Luo K
    Sci Rep; 2015 Jul; 5():12217. PubMed ID: 26193631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and
    Hu P; Zhao X; Zhang Q; Li W; Zu Y
    G3 (Bethesda); 2018 Mar; 8(3):823-831. PubMed ID: 29295818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.