These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 26632974)
1. Theoretical Prediction of Hydrogen Separation Performance of Two-Dimensional Carbon Network of Fused Pentagon. Zhu L; Xue Q; Li X; Jin Y; Zheng H; Wu T; Guo Q ACS Appl Mater Interfaces; 2015 Dec; 7(51):28502-7. PubMed ID: 26632974 [TBL] [Abstract][Full Text] [Related]
2. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. Tao Y; Xue Q; Liu Z; Shan M; Ling C; Wu T; Li X ACS Appl Mater Interfaces; 2014 Jun; 6(11):8048-58. PubMed ID: 24621326 [TBL] [Abstract][Full Text] [Related]
3. Expanded Porphyrins as Two-Dimensional Porous Membranes for CO2 Separation. Tian Z; Dai S; Jiang DE ACS Appl Mater Interfaces; 2015 Jun; 7(23):13073-9. PubMed ID: 25988306 [TBL] [Abstract][Full Text] [Related]
4. A remarkable two-dimensional membrane for multifunctional gas separation: halogenated metal-free fused-ring polyphthalocyanine. Meng Z; Zhang Y; Shi Q; Liu Y; Du A; Lu R Phys Chem Chem Phys; 2018 Jul; 20(28):18931-18937. PubMed ID: 29896586 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen purification performance of a nanoporous hexagonal boron nitride membrane: molecular dynamics and first-principle simulations. Darvish Ganji M; Dodangeh R Phys Chem Chem Phys; 2017 May; 19(19):12032-12044. PubMed ID: 28443917 [TBL] [Abstract][Full Text] [Related]
6. Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. Wang Y; Li J; Yang Q; Zhong C ACS Appl Mater Interfaces; 2016 Apr; 8(13):8694-701. PubMed ID: 26964618 [TBL] [Abstract][Full Text] [Related]
7. Defective germanene as a high-efficiency helium separation membrane: a first-principles study. Zhu L; Chang X; He D; Xue Q; Li X; Jin Y; Zheng H; Ling C Nanotechnology; 2017 Mar; 28(13):135703. PubMed ID: 28248644 [TBL] [Abstract][Full Text] [Related]
8. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Liu H; Dai S; Jiang DE Nanoscale; 2013 Oct; 5(20):9984-7. PubMed ID: 23990030 [TBL] [Abstract][Full Text] [Related]
9. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710 [TBL] [Abstract][Full Text] [Related]
10. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Wang Y; Yang Q; Li J; Yang J; Zhong C Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145 [TBL] [Abstract][Full Text] [Related]
11. Single-layered fluorinated graphene nanopores for H Wang T; Liu L; Perez-Aguilar JM; Gu Z J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488 [TBL] [Abstract][Full Text] [Related]
12. Theoretically designed two-dimensional γ-C Ning C; Zhang Y; Wang J; Gao H; Xiao C; Meng Z; Dong H Phys Chem Chem Phys; 2020 Sep; 22(35):19492-19501. PubMed ID: 32729590 [TBL] [Abstract][Full Text] [Related]
13. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Wen B; Sun C; Bai B Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Selective Hydrogen Permeation through Graphdiyne Membrane: A Theoretical Study. Liu Q; Cheng L; Liu G Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076414 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide separation with a two-dimensional polymer membrane. Schrier J ACS Appl Mater Interfaces; 2012 Jul; 4(7):3745-52. PubMed ID: 22734516 [TBL] [Abstract][Full Text] [Related]
16. A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane. Rezaee P; Naeij HR Sci Rep; 2020 Aug; 10(1):13549. PubMed ID: 32782345 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen separation with a graphenylene monolayer: Diffusion Monte Carlo study. Lee G; Hong I; Ahn J; Shin H; Benali A; Kwon Y J Chem Phys; 2022 Oct; 157(14):144703. PubMed ID: 36243533 [TBL] [Abstract][Full Text] [Related]
18. Nanoporous MoS Zhang Y; Meng Z; Shi Q; Gao H; Liu Y; Wang Y; Rao D; Deng K; Lu R J Phys Condens Matter; 2017 Sep; 29(37):375201. PubMed ID: 28675145 [TBL] [Abstract][Full Text] [Related]
19. Computational Studies on Holey TMC Xie J; Ning C; Liu Q; Sun Z; Yang J; Dong H Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877912 [TBL] [Abstract][Full Text] [Related]
20. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane. Yao B; Mandrà S; Curry JO; Shaikhutdinov S; Freund HJ; Schrier J ACS Appl Mater Interfaces; 2017 Dec; 9(49):43061-43071. PubMed ID: 29156127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]