These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 26633001)
1. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Liu Y; Li D; Liu Z; Zhou Y; Chu D; Li X; Jiang X; Hou D; Chen X; Chen Y; Yang Z; Jin L; Jiang W; Tian C; Zhou G; Zen K; Zhang J; Zhang Y; Li J; Zhang CY Sci Rep; 2015 Dec; 5():17543. PubMed ID: 26633001 [TBL] [Abstract][Full Text] [Related]
2. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Gao Y; Wang ZY; Zhang J; Zhang Y; Huo H; Wang T; Jiang T; Wang S Biomacromolecules; 2014 Mar; 15(3):1010-8. PubMed ID: 24547943 [TBL] [Abstract][Full Text] [Related]
3. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Cooper JM; Wiklander PB; Nordin JZ; Al-Shawi R; Wood MJ; Vithlani M; Schapira AH; Simons JP; El-Andaloussi S; Alvarez-Erviti L Mov Disord; 2014 Oct; 29(12):1476-85. PubMed ID: 25112864 [TBL] [Abstract][Full Text] [Related]
4. Transvascular delivery of small interfering RNA to the central nervous system. Kumar P; Wu H; McBride JL; Jung KE; Kim MH; Davidson BL; Lee SK; Shankar P; Manjunath N Nature; 2007 Jul; 448(7149):39-43. PubMed ID: 17572664 [TBL] [Abstract][Full Text] [Related]
5. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Alvarez-Erviti L; Seow Y; Yin H; Betts C; Lakhal S; Wood MJ Nat Biotechnol; 2011 Apr; 29(4):341-5. PubMed ID: 21423189 [TBL] [Abstract][Full Text] [Related]
6. Delivery of High Mobility Group Box-1 siRNA Using Brain-Targeting Exosomes for Ischemic Stroke Therapy. Kim M; Kim G; Hwang DW; Lee M J Biomed Nanotechnol; 2019 Dec; 15(12):2401-2412. PubMed ID: 31748020 [TBL] [Abstract][Full Text] [Related]
7. The proteins interacting with C-terminal of μ receptor are identified by bacterial two-hybrid system from brain cDNA library in morphine-dependent rats. Zhou P; Jiang J; Dong Z; Yan H; You Z; Su R; Gong Z Life Sci; 2015 Dec; 143():156-67. PubMed ID: 26522050 [TBL] [Abstract][Full Text] [Related]
8. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Kim SS; Ye C; Kumar P; Chiu I; Subramanya S; Wu H; Shankar P; Manjunath N Mol Ther; 2010 May; 18(5):993-1001. PubMed ID: 20216529 [TBL] [Abstract][Full Text] [Related]
9. The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Ma J; Yuan X; Qu H; Zhang J; Wang D; Sun X; Zheng Q Life Sci; 2015 Mar; 124():128-35. PubMed ID: 25623851 [TBL] [Abstract][Full Text] [Related]
10. RVG peptide as transfection reagent for specific cdk4 gene silencing in vitro and in vivo. Rohn S; Suttkus A; Arendt T; Ueberham U J Drug Target; 2012 May; 20(4):381-8. PubMed ID: 22443811 [TBL] [Abstract][Full Text] [Related]
11. Identification and functional significance of polymorphisms in the mu-opioid receptor gene (Oprm) promoter of C57BL/6 and DBA/2 mice. Doyle GA; Sheng XR; Schwebel CL; Ferraro TN; Berrettini WH; Buono RJ Neurosci Res; 2006 Jul; 55(3):244-54. PubMed ID: 16644048 [TBL] [Abstract][Full Text] [Related]
12. A novel knock-in mouse reveals mechanistically distinct forms of morphine tolerance. Enquist J; Kim JA; Bartlett S; Ferwerda M; Whistler JL J Pharmacol Exp Ther; 2011 Aug; 338(2):633-40. PubMed ID: 21562138 [TBL] [Abstract][Full Text] [Related]
13. A Positioning Device for the Placement of Mice During Intranasal siRNA Delivery to the Central Nervous System. Ullah I; Chung K; Beloor J; Lee SK; Kumar P J Vis Exp; 2019 Aug; (150):. PubMed ID: 31475960 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Bao Y; Gao Y; Yang L; Kong X; Yu J; Hou W; Hua B Channels (Austin); 2015; 9(5):235-43. PubMed ID: 26176938 [TBL] [Abstract][Full Text] [Related]
15. Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Gavériaux-Ruff C; Matthes HW; Peluso J; Kieffer BL Proc Natl Acad Sci U S A; 1998 May; 95(11):6326-30. PubMed ID: 9600964 [TBL] [Abstract][Full Text] [Related]
16. Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Dos Santos Rodrigues B; Arora S; Kanekiyo T; Singh J Brain Res; 2020 May; 1734():146738. PubMed ID: 32081534 [TBL] [Abstract][Full Text] [Related]
17. Exosome-mediated delivery of siRNA in vitro and in vivo. El-Andaloussi S; Lee Y; Lakhal-Littleton S; Li J; Seow Y; Gardiner C; Alvarez-Erviti L; Sargent IL; Wood MJ Nat Protoc; 2012 Dec; 7(12):2112-26. PubMed ID: 23154783 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: in vitro analysis. Gooding M; Malhotra M; McCarthy DJ; Godinho BM; Cryan JF; Darcy R; O'Driscoll CM Eur J Pharm Sci; 2015 Apr; 71():80-92. PubMed ID: 25703259 [TBL] [Abstract][Full Text] [Related]
19. Genetically engineered exosomes display RVG peptide and selectively enrich a neprilysin variant: a potential formulation for the treatment of Alzheimer's disease. Yu Y; Li W; Mao L; Peng W; Long D; Li D; Zhou R; Dang X J Drug Target; 2021 Dec; 29(10):1128-1138. PubMed ID: 34182845 [TBL] [Abstract][Full Text] [Related]
20. Targeting Morphine-Responsive Neurons: Generation of a Knock-In Mouse Line Expressing Cre Recombinase from the Mu-Opioid Receptor Gene Locus. Bailly J; Del Rossi N; Runtz L; Li JJ; Park D; Scherrer G; Tanti A; Birling MC; Darcq E; Kieffer BL eNeuro; 2020; 7(3):. PubMed ID: 32381649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]