BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26633020)

  • 1. Importance of Proton-Coupled Electron Transfer from Natural Phenolic Compounds in Superoxide Scavenging.
    Nakayama T; Uno B
    Chem Pharm Bull (Tokyo); 2015; 63(12):967-73. PubMed ID: 26633020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and Mechanistic Study of Reactivities of α-, β-, γ-, and δ-Tocopherol toward Electrogenerated Superoxide in
    Nakayama T; Honda R; Kuwata K; Usui S; Uno B
    Antioxidants (Basel); 2021 Dec; 11(1):. PubMed ID: 35052513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and Mechanistic Study of Superoxide Elimination by Mesalazine through Proton-Coupled Electron Transfer.
    Nakayama T; Honda R
    Pharmaceuticals (Basel); 2021 Feb; 14(2):. PubMed ID: 33557324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of
    Nakayama T; Uno B
    J Agric Food Chem; 2023 Mar; 71(10):4382-4393. PubMed ID: 36852964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galloylated polyphenols efficiently reduce alpha-tocopherol radicals in a phospholipid model system composed of sodium dodecyl sulfate (SDS) micelles.
    Pazos M; Torres JL; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jun; 57(11):5042-8. PubMed ID: 19422241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tocopheramines and tocotrienamines as antioxidants: ESR spectroscopy, rapid kinetics and DFT calculations.
    Bamonti L; Hosoya T; Pirker KF; Böhmdorfer S; Mazzini F; Galli F; Netscher T; Rosenau T; Gille L
    Bioorg Med Chem; 2013 Sep; 21(17):5039-46. PubMed ID: 23876337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and stoichiometric assessment of the antioxidant activity of flavonoids by electron spin resonance spectroscopy.
    McPhail DB; Hartley RC; Gardner PT; Duthie GG
    J Agric Food Chem; 2003 Mar; 51(6):1684-90. PubMed ID: 12617605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of the effect of solvent on the H-atom transfer involved in the scavenging of the free radicals (·)HO2 and (·)O2(-) by caffeic acid phenethyl ester and some of its derivatives.
    Holtomo O; Nsangou M; Fifen JJ; Motapon O
    J Mol Model; 2014 Nov; 20(11):2509. PubMed ID: 25388279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of natural phenolic compounds regenerating alpha-tocopherol from alpha-tocopheroxyl radical.
    Pazos M; Andersen ML; Medina I; Skibsted LH
    J Agric Food Chem; 2007 May; 55(9):3661-6. PubMed ID: 17419638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives.
    Kawashima T; Ohkubo K; Fukuzumi S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3344-52. PubMed ID: 21212887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.
    Gamiz-Hernandez AP; Magomedov A; Hummer G; Kaila VR
    J Phys Chem B; 2015 Feb; 119(6):2611-9. PubMed ID: 25485993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A planar catechin analogue as a promising antioxidant with reduced prooxidant activity.
    Fukuhara K; Nakanishi I; Shimada T; Ohkubo K; Miyazaki K; Hakamata W; Urano S; Ozawa T; Okuda H; Miyata N; Ikota N; Fukuzumi S
    Chem Res Toxicol; 2003 Jan; 16(1):81-6. PubMed ID: 12693034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production.
    Gruber J; Staniek K; Krewenka C; Moldzio R; Patel A; Böhmdorfer S; Rosenau T; Gille L
    Bioorg Med Chem; 2014 Jan; 22(2):684-91. PubMed ID: 24393721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms.
    Amić A; Marković Z; Dimitrić Marković JM; Stepanić V; Lučić B; Amić D
    Food Chem; 2014; 152():578-85. PubMed ID: 24444978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Electrochemiluminescence for the Evaluation of the Antioxidant Capacity of Some Phenolic Compounds Against Superoxide Anion Radicals.
    Matsuoka M; Jin J
    Anal Sci; 2015; 31(7):629-34. PubMed ID: 26165285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adiabaticity of the proton-coupled electron-transfer step in the reduction of superoxide effected by nickel-containing superoxide dismutase metallopeptide-based mimics.
    Shearer J; Schmitt JC; Clewett HS
    J Phys Chem B; 2015 Apr; 119(17):5453-61. PubMed ID: 25850940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation.
    Williams LL; Webster RD
    J Am Chem Soc; 2004 Oct; 126(39):12441-50. PubMed ID: 15453778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scavenging of superoxide anion radical and hydroxyl radical by novel thiazolyl-thiazolidine-2,4-dione compounds.
    Bozdağ-Dündar O; Gürkan S; Aboul-Enein HY; Kruk I; Kładna A
    Luminescence; 2009; 24(3):194-201. PubMed ID: 19347853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates.
    Ouchi A; Nagaoka S; Abe K; Mukai K
    J Phys Chem B; 2009 Oct; 113(40):13322-31. PubMed ID: 19754085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids.
    Furuno K; Akasako T; Sugihara N
    Biol Pharm Bull; 2002 Jan; 25(1):19-23. PubMed ID: 11824550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.