These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26633020)

  • 21. Radical anions of flavonoids.
    Vakulskaya TI; Larina LI; Vashchenko AV
    Magn Reson Chem; 2011 Aug; 49(8):508-13. PubMed ID: 21751247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How do phenolic compounds react toward superoxide ion? A simple electrochemical method for evaluating antioxidant capacity.
    René A; Abasq ML; Hauchard D; Hapiot P
    Anal Chem; 2010 Oct; 82(20):8703-10. PubMed ID: 20866027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions.
    Geletii YV; Hill CL; Atalla RH; Weinstock IA
    J Am Chem Soc; 2006 Dec; 128(51):17033-42. PubMed ID: 17177455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues.
    Krumova K; Friedland S; Cosa G
    J Am Chem Soc; 2012 Jun; 134(24):10102-13. PubMed ID: 22568598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidative properties of probucol estimated by the reactivity with superoxide and by electrochemical oxidation.
    Araki T; Kitaoka H
    Chem Pharm Bull (Tokyo); 2001 Aug; 49(8):943-7. PubMed ID: 11515582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A theoretical study of the different radical-scavenging activities of catechin, quercetin, and a rationally designed planar catechin.
    Wang LF; Zhang HY
    Bioorg Chem; 2005 Apr; 33(2):108-15. PubMed ID: 15788166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concerted Two-Proton-Coupled Electron Transfer from Piceatannol to Electrogenerated Superoxide in
    Nakayama T; Uno B
    ACS Omega; 2024 Jun; 9(23):24889-24898. PubMed ID: 38882073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant properties of natural and synthetic chromanol derivatives: study by fast kinetics and electron spin resonance spectroscopy.
    Gregor W; Grabner G; Adelwöhrer C; Rosenau T; Gille L
    J Org Chem; 2005 Apr; 70(9):3472-83. PubMed ID: 15844980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of the transition from sequential to concerted electrochemical proton-electron transfer.
    Koper MT
    Phys Chem Chem Phys; 2013 Feb; 15(5):1399-407. PubMed ID: 23011280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum mechanical study of antioxidative ability and antioxidative mechanism of rutin (vitamin P) in solution.
    Ghiasi M; Heravi MM
    Carbohydr Res; 2011 May; 346(6):739-44. PubMed ID: 21397896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of electron-transfer reduction of oxygen by hydrogen bond formation of superoxide anion with ammonium ion.
    Ohkubo K; Kitaguchi H; Fukuzumi S
    J Phys Chem A; 2006 Oct; 110(41):11613-6. PubMed ID: 17034154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ubiquinone-dependent recycling of vitamin E radicals by superoxide.
    Stoyanovsky DA; Osipov AN; Quinn PJ; Kagan VE
    Arch Biochem Biophys; 1995 Nov; 323(2):343-51. PubMed ID: 7487097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton-coupled electron-transfer processes in photosystem II probed by highly resolved g-anisotropy of redox-active tyrosine YZ.
    Matsuoka H; Shen JR; Kawamori A; Nishiyama K; Ohba Y; Yamauchi S
    J Am Chem Soc; 2011 Mar; 133(12):4655-60. PubMed ID: 21381752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on electrochemical properties and scavenge of superoxide anion in aprotic media by using carbon nanotubes powder microelectrode.
    Wei Y; Ji X; Dang X; Hu S
    Bioelectrochemistry; 2003 Oct; 61(1-2):51-6. PubMed ID: 14642909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms Associated with Superoxide Radical Scavenging Reactions Involving Phenolic Compounds Deduced Based on the Correlation between Oxidation Peak Potentials and Second-Order Rate Constants Determined Using Flow-Injection Spin-Trapping EPR Methods.
    Sakurai Y; Yamaguchi S; Yamashita T; Lu Y; Kuwabara K; Yamaguchi T; Miyake Y; Kanaori K; Watanabe S; Tajima K
    J Agric Food Chem; 2024 Jul; ():. PubMed ID: 38960914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct simulation of proton-coupled electron transfer across multiple regimes.
    Kretchmer JS; Miller TF
    J Chem Phys; 2013 Apr; 138(13):134109. PubMed ID: 23574210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concerted double proton-transfer electron-transfer between catechol and superoxide radical anion.
    Quintero-Saumeth J; Rincón DA; Doerr M; Daza MC
    Phys Chem Chem Phys; 2017 Oct; 19(38):26179-26190. PubMed ID: 28930314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton-coupled electron transfer with photoexcited metal complexes.
    Wenger OS
    Acc Chem Res; 2013 Jul; 46(7):1517-26. PubMed ID: 23402212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.