These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26633020)

  • 41. Food Antioxidants: Chemical Insights at the Molecular Level.
    Galano A; Mazzone G; Alvarez-Diduk R; Marino T; Alvarez-Idaboy JR; Russo N
    Annu Rev Food Sci Technol; 2016; 7():335-52. PubMed ID: 26772412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton-coupled electron transfer: a reaction chemist's view.
    Mayer JM
    Annu Rev Phys Chem; 2004; 55():363-90. PubMed ID: 15117257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superoxide Formation in Cardiac Mitochondria and Effect of Phenolic Antioxidants.
    Dudylina AL; Ivanova MV; Shumaev KB; Ruuge EK
    Cell Biochem Biophys; 2019 Mar; 77(1):99-107. PubMed ID: 30218405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative approach to the recycling of alpha-tocopherol by coantioxidants.
    Amorati R; Ferroni F; Lucarini M; Pedulli GF; Valgimigli L
    J Org Chem; 2002 Dec; 67(26):9295-303. PubMed ID: 12492331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)-oxo complex.
    Park J; Morimoto Y; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2012 Feb; 134(8):3903-11. PubMed ID: 22339209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-line HPLC method for screening of antioxidants against superoxide anion radical from complex mixtures.
    Sun C; Fu J; Chen J; Jiang L; Pan Y
    J Sep Sci; 2010 Apr; 33(8):1018-23. PubMed ID: 20183820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel flavonoid from Lespedeza virgata (Thunb.) DC.: structural elucidation and antioxidative activity.
    Tan L; Zhang XF; Yan BZ; Shi HM; Du LB; Zhang YZ; Wang LF; Tang YL; Liu Y
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6311-5. PubMed ID: 17890083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carboxylates as proton-accepting groups in concerted proton-electron transfers. Electrochemistry of the 2,5-dicarboxylate 1,4-hydrobenzoquinone/2,5-dicarboxy 1,4-benzoquinone couple.
    Costentin C; Robert M; Savéant JM
    J Am Chem Soc; 2006 Jul; 128(27):8726-7. PubMed ID: 16819855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The kinetic effect of internal hydrogen bonds on proton-coupled electron transfer from phenols: a theoretical analysis with modeling of experimental data.
    Johannissen LO; Irebo T; Sjödin M; Johansson O; Hammarström L
    J Phys Chem B; 2009 Dec; 113(50):16214-25. PubMed ID: 20000384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Concerted proton-electron transfers: electrochemical and related approaches.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2010 Jul; 43(7):1019-29. PubMed ID: 20232879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A DFT Study on the Kinetics of HOO
    Amić A; Mastiľák Cagardová D
    Antioxidants (Basel); 2023 May; 12(6):. PubMed ID: 37371883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A quantum chemical explanation of the antioxidant activity of flavonoids.
    van Acker SA; de Groot MJ; van den Berg DJ; Tromp MN; Donné-Op den Kelder G; van der Vijgh WJ; Bast A
    Chem Res Toxicol; 1996 Dec; 9(8):1305-12. PubMed ID: 8951233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids.
    Musialik M; Kuzmicz R; Pawłowski TS; Litwinienko G
    J Org Chem; 2009 Apr; 74(7):2699-709. PubMed ID: 19275193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action.
    Anouar el H; Raweh S; Bayach I; Taha M; Baharudin MS; Di Meo F; Hasan MH; Adam A; Ismail NH; Weber JF; Trouillas P
    J Comput Aided Mol Des; 2013 Nov; 27(11):951-64. PubMed ID: 24243063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wine polyphenols and ethanol do not significantly scavenge superoxide nor affect endothelial nitric oxide production.
    Huisman A; Van De Wiel A; Rabelink TJ; Van Faassen EE
    J Nutr Biochem; 2004 Jul; 15(7):426-32. PubMed ID: 15219928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the antioxidant properties of three synthetic flavonols.
    Montaña MP; Pappano N; Giordano SO; Molina P; Debattista NB; García NA
    Pharmazie; 2007 Jan; 62(1):72-6. PubMed ID: 17294818
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Caffeic acid as antioxidant in fish muscle: mechanism of synergism with endogenous ascorbic acid and alpha-tocopherol.
    Iglesias J; Pazos M; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jan; 57(2):675-81. PubMed ID: 19117418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.