BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26633217)

  • 1. AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA.
    Aduri R; Psciuk BT; Saro P; Taniga H; Schlegel HB; SantaLucia J
    J Chem Theory Comput; 2007 Jul; 3(4):1464-75. PubMed ID: 26633217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational preferences of modified uridines: comparison of AMBER derived force fields.
    Deb I; Sarzynska J; Nilsson L; Lahiri A
    J Chem Inf Model; 2014 Apr; 54(4):1129-42. PubMed ID: 24697757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions.
    Ricci CG; de Andrade AS; Mottin M; Netz PA
    J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive CHARMM force field for naturally occurring modified ribonucleotides.
    Xu Y; Vanommeslaeghe K; Aleksandrov A; MacKerell AD; Nilsson L
    J Comput Chem; 2016 Apr; 37(10):896-912. PubMed ID: 26841080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.
    Chapman DE; Steck JK; Nerenberg PS
    J Chem Theory Comput; 2014 Jan; 10(1):273-81. PubMed ID: 26579910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes.
    Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE
    J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration.
    Beššeová I; Banáš P; Kührová P; Košinová P; Otyepka M; Šponer J
    J Phys Chem B; 2012 Aug; 116(33):9899-916. PubMed ID: 22809319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field.
    Agrawal PM; Rice BM; Zheng L; Thompson DL
    J Phys Chem B; 2006 Dec; 110(51):26185-8. PubMed ID: 17181274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. van der Waals Parameter Scanning with Amber Nucleic Acid Force Fields: Revisiting Means to Better Capture the RNA/DNA Structure through MD.
    Love O; Winkler L; Cheatham TE
    J Chem Theory Comput; 2024 Jan; 20(2):625-643. PubMed ID: 38157247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics.
    Doshi U; Hamelberg D
    J Phys Chem B; 2009 Dec; 113(52):16590-5. PubMed ID: 19938868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks:  Application to the AMBER99SB Force Field.
    Showalter SA; Brüschweiler R
    J Chem Theory Comput; 2007 May; 3(3):961-75. PubMed ID: 26627416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble.
    Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ
    J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of nucleic acid complexes with cationic ligands: a specialized molecular mechanics force field and its application.
    Veal JM; Wilson WD
    J Biomol Struct Dyn; 1991 Jun; 8(6):1119-45. PubMed ID: 1716441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems.
    Shi S; Yan L; Yang Y; Fisher-Shaulsky J; Thacher T
    J Comput Chem; 2003 Jul; 24(9):1059-76. PubMed ID: 12759906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the melting of 1,3,3-trinitroazetidine.
    Agrawal PM; Rice BM; Zheng L; Velardez GF; Thompson DL
    J Phys Chem B; 2006 Mar; 110(11):5721-6. PubMed ID: 16539517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Protein-Protein Recognition in Solution Using the Coarse-Grained Force Field SCORPION.
    Basdevant N; Borgis D; Ha-Duong T
    J Chem Theory Comput; 2013 Jan; 9(1):803-13. PubMed ID: 26589072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of tri-n-butyl-phosphate liquid: a force field comparative study.
    Cui S; de Almeida VF; Hay BP; Ye X; Khomami B
    J Phys Chem B; 2012 Jan; 116(1):305-13. PubMed ID: 22126596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Protein Simulations Using AMBER Force Field and Berger Lipid Parameters.
    Cordomí A; Caltabiano G; Pardo L
    J Chem Theory Comput; 2012 Mar; 8(3):948-58. PubMed ID: 26593357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.