These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 26633220)
1. Solid-Liquid Interfacial Free Energy of Water: A Molecular Dynamics Simulation Study. Wang J; Tang YW; Zeng XC J Chem Theory Comput; 2007 Jul; 3(4):1494-8. PubMed ID: 26633220 [TBL] [Abstract][Full Text] [Related]
2. Melting temperature of ice Ih calculated from coexisting solid-liquid phases. Wang J; Yoo S; Bai J; Morris JR; Zeng XC J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767 [TBL] [Abstract][Full Text] [Related]
3. Clusters of classical water models. Kiss PT; Baranyai A J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683 [TBL] [Abstract][Full Text] [Related]
4. Ice Ih-Water Interfacial Free Energy of Simple Water Models with Full Electrostatic Interactions. Davidchack RL; Handel R; Anwar J; Brukhno AV J Chem Theory Comput; 2012 Jul; 8(7):2383-90. PubMed ID: 26588971 [TBL] [Abstract][Full Text] [Related]
5. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. García Fernández R; Abascal JL; Vega C J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213 [TBL] [Abstract][Full Text] [Related]
6. Surface tension of the most popular models of water by using the test-area simulation method. Vega C; de Miguel E J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659 [TBL] [Abstract][Full Text] [Related]
7. Toward a molecular dynamics force field for simulations of 40% trifluoroethanol-water. Gerig JT J Phys Chem B; 2014 Feb; 118(6):1471-80. PubMed ID: 24460479 [TBL] [Abstract][Full Text] [Related]
8. Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface. Handel R; Davidchack RL; Anwar J; Brukhno A Phys Rev Lett; 2008 Jan; 100(3):036104. PubMed ID: 18233007 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. Horn HW; Swope WC; Pitera JW J Chem Phys; 2005 Nov; 123(19):194504. PubMed ID: 16321097 [TBL] [Abstract][Full Text] [Related]
10. The melting temperature of the most common models of water. Vega C; Sanz E; Abascal JL J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229 [TBL] [Abstract][Full Text] [Related]
11. Computer simulation of two new solid phases of water: Ice XIII and ice XIV. Martin-Conde M; MacDowell LG; Vega C J Chem Phys; 2006 Sep; 125(11):116101. PubMed ID: 16999507 [TBL] [Abstract][Full Text] [Related]
12. Correlations in liquid water for the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP models. Huggins DJ J Chem Phys; 2012 Feb; 136(6):064518. PubMed ID: 22360206 [TBL] [Abstract][Full Text] [Related]
13. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. Koyama Y; Tanaka H; Gao G; Zeng XC J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255 [TBL] [Abstract][Full Text] [Related]
14. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study. Wang J; Apte PA; Morris JR; Zeng XC J Chem Phys; 2013 Sep; 139(11):114705. PubMed ID: 24070303 [TBL] [Abstract][Full Text] [Related]
15. Free energy of liquid water from a computer simulation via cell theory. Henchman RH J Chem Phys; 2007 Feb; 126(6):064504. PubMed ID: 17313226 [TBL] [Abstract][Full Text] [Related]
16. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water. Mountain RD J Phys Chem B; 2009 Jan; 113(2):482-6. PubMed ID: 19086867 [TBL] [Abstract][Full Text] [Related]
17. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. Vega C; Abascal JL; Nezbeda I J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358 [TBL] [Abstract][Full Text] [Related]
18. Simulation of the THF hydrate-water interfacial free energy from computer simulation. Torrejón MJ; Romero-Guzmán C; Piñeiro MM; Blas FJ; Algaba J J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39115168 [TBL] [Abstract][Full Text] [Related]
19. Effect of pressure on the carbon dioxide hydrate-water interfacial free energy along its dissociation line. Romero-Guzmán C; Zerón IM; Algaba J; Mendiboure B; Míguez JM; Blas FJ J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184014 [TBL] [Abstract][Full Text] [Related]
20. Interfacial thermodynamics of water and six other liquid solvents. Pascal TA; Goddard WA J Phys Chem B; 2014 Jun; 118(22):5943-56. PubMed ID: 24820859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]