BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26633265)

  • 1. Dynamics of directional coupling underlying spike-wave discharges.
    Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV
    Neuroscience; 2016 Feb; 314():75-89. PubMed ID: 26633265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses.
    Lüttjohann A; Schoffelen JM; van Luijtelaar G
    Neurobiol Dis; 2014 Oct; 70():127-37. PubMed ID: 24953875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy.
    Lüttjohann A; van Luijtelaar G
    Neurobiol Dis; 2012 Jul; 47(1):49-60. PubMed ID: 22465080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Thalamo-Cortical Mechanisms of Initiation, Maintenance and Termination of Spike-wave Discharges at WAG/Rij rats].
    Sysoeva MV; Sitnikova E; Sysoev IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016; 66(1):103-12. PubMed ID: 27263280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in corticocortical and corticohippocampal network during absence seizures in WAG/Rij rats revealed with time varying Granger causality.
    Sysoeva MV; Vinogradova LV; Kuznetsova GD; Sysoev IV; van Rijn CM
    Epilepsy Behav; 2016 Nov; 64(Pt A):44-50. PubMed ID: 27728902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peri-ictal network dynamics of spike-wave discharges: phase and spectral characteristics.
    Lüttjohann A; Schoffelen JM; van Luijtelaar G
    Exp Neurol; 2013 Jan; 239():235-47. PubMed ID: 23124095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granger causality: cortico-thalamic interdependencies during absence seizures in WAG/Rij rats.
    Sitnikova E; Dikanev T; Smirnov D; Bezruchko B; van Luijtelaar G
    J Neurosci Methods; 2008 May; 170(2):245-54. PubMed ID: 18313761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thalamo-Cortical and Thalamo-Thalamic Coupling During Sleep and Wakefulness in Rats.
    Sysoev IV; van Luijtelaar G; Lüttjohann A
    Brain Connect; 2022 Sep; 12(7):650-659. PubMed ID: 34498943
    [No Abstract]   [Full Text] [Related]  

  • 9. Thalamic stimulation in absence epilepsy.
    Lüttjohann A; van Luijtelaar G
    Epilepsy Res; 2013 Sep; 106(1-2):136-45. PubMed ID: 23602552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and thalamic coherence during spike-wave seizures in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsy Res; 2006 Oct; 71(2-3):159-80. PubMed ID: 16879948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional specificity of cortico-thalamic coupling strength and directionality during waxing and waning of spike and wave discharges.
    Lüttjohann A; Pape HC
    Sci Rep; 2019 Feb; 9(1):2100. PubMed ID: 30765744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses.
    Sitnikova E; van Luijtelaar G
    Epilepsy Res; 2009 Apr; 84(2-3):159-71. PubMed ID: 19269137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review).
    Sitnikova E
    Epilepsy Res; 2010 Mar; 89(1):17-26. PubMed ID: 19828296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures.
    Atherton Z; Nagy O; Barcsai L; Sere P; Zsigri N; Földi T; Gellért L; Berényi A; Crunelli V; Lőrincz ML
    Neurobiol Dis; 2023 Mar; 178():106025. PubMed ID: 36731682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of adaptive nonlinear Granger causality: disclosing network changes before and after absence seizure onset in a genetic rat model.
    Sysoeva MV; Sitnikova E; Sysoev IV; Bezruchko BP; van Luijtelaar G
    J Neurosci Methods; 2014 Apr; 226():33-41. PubMed ID: 24486875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of perioral afferentation in the occurrenceof spike-wave discharges in the WAG/Rij modelof absence epilepsy.
    Abbasova KR; Chepurnov SA; Chepurnova NE; van Luijtelaar G
    Brain Res; 2010 Dec; 1366():257-62. PubMed ID: 20934415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of high-frequency cortical stimulation in a genetic absence model.
    van Heukelum S; Kelderhuis J; Janssen P; van Luijtelaar G; Lüttjohann A
    Neuroscience; 2016 Jun; 324():191-201. PubMed ID: 26964688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence epileptic activity in Wistar Albino Glaxo Rijswijk rat mothers.
    Kovács Z; Lakatos RK; Barna J; Dobolyi Á
    Brain Res; 2017 Feb; 1657():368-376. PubMed ID: 28065565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical mesoscale model of absence seizures in genetic models.
    Medvedeva TM; Sysoeva MV; Lüttjohann A; van Luijtelaar G; Sysoev IV
    PLoS One; 2020; 15(9):e0239125. PubMed ID: 32991590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.