BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26633336)

  • 1. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.
    Sase S; Kakimoto R; Kimura R; Goto K
    Molecules; 2015 Dec; 20(12):21415-20. PubMed ID: 26633336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic studies on iodothyronine deiodinase intermediates: modeling the reduction of selenenyl iodide by thiols.
    Mugesh G; du Mont WW; Wismach C; Jones PG
    Chembiochem; 2002 May; 3(5):440-7. PubMed ID: 12007178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of the Formation of a Selenocysteine Selenenic Acid through Hydrolysis of a Selenocysteine Selenenyl Iodide Utilizing a Protective Molecular Cradle.
    Goto K; Kimura R; Masuda R; Karasaki T; Sase S
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates.
    Sarma BK; Mugesh G
    Chemistry; 2008; 14(34):10603-14. PubMed ID: 18932179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenenyl iodide: a new substrate for mammalian thioredoxin reductase.
    Mugesh G; Klotz LO; du Mont WW; Becker K; Sies H
    Org Biomol Chem; 2003 Aug; 1(16):2848-52. PubMed ID: 12968334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first direct oxidative conversion of a selenol to a stable selenenic acid: experimental demonstration of three processes included in the catalytic cycle of glutathione peroxidase.
    Goto K; Nagahama M; Mizushima T; Shimada K; Kawashima T; Okazaki R
    Org Lett; 2001 Nov; 3(22):3569-72. PubMed ID: 11678710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids.
    Masuda R; Kimura R; Karasaki T; Sase S; Goto K
    J Am Chem Soc; 2021 May; 143(17):6345-6350. PubMed ID: 33887135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, structure and reactivity of [o-(2,6-diisopropylphenyliminomethinyl)phenyl]selenenyl selenocyanate (RSeSeCN) and related derivatives.
    Rakesh P; Singh HB; Jasinski JP; Golen JA
    Dalton Trans; 2014 Jul; 43(25):9431-7. PubMed ID: 24671344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of selenocysteine-derived reactive intermediates utilizing a nano-sized molecular cavity as a protective cradle.
    Masuda R; Goto K
    Methods Enzymol; 2022; 662():331-361. PubMed ID: 35101217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study.
    Mugesh G; Panda A; Singh HB; Punekar NS; Butcher RJ
    J Am Chem Soc; 2001 Feb; 123(5):839-50. PubMed ID: 11456617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of a stable selenoaldehyde by self-catalyzed thermal dehydration of a primary-alkyl-substituted selenenic acid.
    Sase S; Kakimoto R; Goto K
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):901-4. PubMed ID: 25411119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the 5'-deiodination of thyroxine by iodothyronine deiodinase: chemical corroboration of a selenenyl iodide intermediate.
    Goto K; Sonoda D; Shimada K; Sase S; Kawashima T
    Angew Chem Int Ed Engl; 2010; 49(3):545-7. PubMed ID: 19998295
    [No Abstract]   [Full Text] [Related]  

  • 13. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases.
    Sarma BK; Mugesh G
    Inorg Chem; 2006 Jul; 45(14):5307-14. PubMed ID: 16813393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigations on the efficient catalytic decomposition of peroxynitrite by ebselen analogues.
    Bhabak KP; Vernekar AA; Jakka SR; Roy G; Mugesh G
    Org Biomol Chem; 2011 Jul; 9(14):5193-200. PubMed ID: 21629895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Phenoxyethanol derived diselenide and related compounds; synthesis of a seven-membered seleninate ester.
    Tripathi SK; Sharma S; Singh HB; Butcher RJ
    Org Biomol Chem; 2011 Jan; 9(2):581-7. PubMed ID: 21049128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics.
    Bhabak KP; Mugesh G
    Chemistry; 2008; 14(28):8640-51. PubMed ID: 18668498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of cyclic selenenate/seleninate esters stabilized by ortho-nitro coordination: their glutathione peroxidase-like activities.
    Singh VP; Singh HB; Butcher RJ
    Chem Asian J; 2011 Jun; 6(6):1431-42. PubMed ID: 21557482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DFT investigation of a bulky biomimetic model catalyzing the 5'-outer ring deiodination of thyroxine.
    Fortino M; Marino T; Russo N; Sicilia E
    J Mol Model; 2016 Dec; 22(12):287. PubMed ID: 27817113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity.
    Singh VP; Poon JF; Butcher RJ; Engman L
    Chemistry; 2014 Sep; 20(39):12563-71. PubMed ID: 25123932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity.
    Bhabak KP; Mugesh G
    Chem Asian J; 2009 Jun; 4(6):974-983. PubMed ID: 19378298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.