These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26634015)

  • 1. Hydrodynamic self-focusing in a parallel microfluidic device through cross-filtration.
    Torino S; Iodice M; Rendina I; Coppola G; Schonbrun E
    Biomicrofluidics; 2015 Nov; 9(6):064107. PubMed ID: 26634015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inexpensive microfluidic device for three-dimensional hydrodynamic focusing in imaging flow cytometry.
    Patel YM; Jain S; Singh AK; Khare K; Ahlawat S; Bahga SS
    Biomicrofluidics; 2020 Nov; 14(6):064110. PubMed ID: 33343784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Hydrodynamic Focusing in Microscale Optofluidic Channels Formed with a Single Sacrificial Layer.
    Hamilton ES; Ganjalizadeh V; Wright JG; Schmidt H; Hawkins AR
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32230783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-layer microfluidic device to realize hydrodynamic 3D flow focusing.
    Eluru G; Julius LA; Gorthi SS
    Lab Chip; 2016 Oct; 16(21):4133-4141. PubMed ID: 27714001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
    Al-Zareer M
    Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-discernment microflow cytometer with microweir structure.
    Fu LM; Tsai CH; Lin CH
    Electrophoresis; 2008 May; 29(9):1874-80. PubMed ID: 18384041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel microfluidic flow focusing method.
    Jiang H; Weng X; Li D
    Biomicrofluidics; 2014 Sep; 8(5):054120. PubMed ID: 25538810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing.
    Chiu YJ; Cho SH; Mei Z; Lien V; Wu TF; Lo YH
    Lab Chip; 2013 May; 13(9):1803-9. PubMed ID: 23493956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells.
    Xu C; Wang M; Yin X
    Analyst; 2011 Oct; 136(19):3877-83. PubMed ID: 21785798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration.
    Clime L; Hoa XD; Corneau N; Morton KJ; Luebbert C; Mounier M; Brassard D; Geissler M; Bidawid S; Farber J; Veres T
    Biomed Microdevices; 2015 Feb; 17(1):17. PubMed ID: 25653055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-free, sheathless cell focusing in exponentially expanding hydrophoretic channels for microflow cytometry.
    Song S; Choi S
    Cytometry A; 2013 Nov; 83(11):1034-40. PubMed ID: 24115760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic particle sorter employing flow splitting and recombining.
    Yamada M; Seki M
    Anal Chem; 2006 Feb; 78(4):1357-62. PubMed ID: 16478134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.