BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26634023)

  • 1. AIBP: A Novel Molecule at the Interface of Cholesterol Transport, Angiogenesis, and Atherosclerosis.
    Zhu L; Fang L
    Methodist Debakey Cardiovasc J; 2015; 11(3):160-5. PubMed ID: 26634023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of angiogenesis by AIBP-mediated cholesterol efflux.
    Fang L; Choi SH; Baek JS; Liu C; Almazan F; Ulrich F; Wiesner P; Taleb A; Deer E; Pattison J; Torres-Vázquez J; Li AC; Miller YI
    Nature; 2013 Jun; 498(7452):118-22. PubMed ID: 23719382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol efflux and reverse cholesterol transport.
    Favari E; Chroni A; Tietge UJ; Zanotti I; Escolà-Gil JC; Bernini F
    Handb Exp Pharmacol; 2015; 224():181-206. PubMed ID: 25522988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux.
    Zhang T; Wang Q; Wang Y; Wang J; Su Y; Wang F; Wang G
    J Transl Med; 2019 May; 17(1):161. PubMed ID: 31101050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice.
    Van der Veken B; De Meyer GRY; Martinet W
    Vascul Pharmacol; 2018 Jan; 100():34-40. PubMed ID: 29079346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AIBP protects against metabolic abnormalities and atherosclerosis.
    Schneider DA; Choi SH; Agatisa-Boyle C; Zhu L; Kim J; Pattison J; Sears DD; Gordts PLSM; Fang L; Miller YI
    J Lipid Res; 2018 May; 59(5):854-863. PubMed ID: 29559522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Density Lipoprotein Functionality as a New Pharmacological Target on Cardiovascular Disease: Unifying Mechanism That Explains High-Density Lipoprotein Protection Toward the Progression of Atherosclerosis.
    Favari E; Thomas MJ; Sorci-Thomas MG
    J Cardiovasc Pharmacol; 2018 Jun; 71(6):325-331. PubMed ID: 29528874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AIBP Limits Angiogenesis Through γ-Secretase-Mediated Upregulation of Notch Signaling.
    Mao R; Meng S; Gu Q; Araujo-Gutierrez R; Kumar S; Yan Q; Almazan F; Youker KA; Fu Y; Pownall HJ; Cooke JP; Miller YI; Fang L
    Circ Res; 2017 May; 120(11):1727-1739. PubMed ID: 28325782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE
    Zhang M; Zhao GJ; Yao F; Xia XD; Gong D; Zhao ZW; Chen LY; Zheng XL; Tang XE; Tang CK
    Atherosclerosis; 2018 Jun; 273():122-130. PubMed ID: 29555084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis.
    Perrotta P; Emini Veseli B; Van der Veken B; Roth L; Martinet W; De Meyer GRY
    Vascul Pharmacol; 2019 Jan; 112():72-78. PubMed ID: 29933080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis.
    Klerkx AH; El Harchaoui K; van der Steeg WA; Boekholdt SM; Stroes ES; Kastelein JJ; Kuivenhoven JA
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):706-15. PubMed ID: 16439711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages.
    Tsubakio-Yamamoto K; Matsuura F; Koseki M; Oku H; Sandoval JC; Inagaki M; Nakatani K; Nakaoka H; Kawase R; Yuasa-Kawase M; Masuda D; Ohama T; Maeda N; Nakagawa-Toyama Y; Ishigami M; Nishida M; Kihara S; Shimomura I; Yamashita S
    Biochem Biophys Res Commun; 2008 Oct; 375(3):390-4. PubMed ID: 18703020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of lipid rafts, angiogenesis and inflammation by AIBP.
    Fang L; Miller YI
    Curr Opin Lipidol; 2019 Jun; 30(3):218-223. PubMed ID: 30985364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of HDL in plaque stabilization and regression: basic mechanisms and clinical implications.
    Feig JE; Feig JL; Dangas GD
    Coron Artery Dis; 2016 Nov; 27(7):592-603. PubMed ID: 27414247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease.
    Hoekstra M
    Atherosclerosis; 2017 Mar; 258():153-161. PubMed ID: 28162236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse cholesterol transport and cholesterol efflux in atherosclerosis.
    Ohashi R; Mu H; Wang X; Yao Q; Chen C
    QJM; 2005 Dec; 98(12):845-56. PubMed ID: 16258026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Challenges in Drug Development Targeting Anti-atherosclerotic Proteins].
    Okuhira K
    Yakugaku Zasshi; 2020; 140(2):153-157. PubMed ID: 32009037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis.
    Mao Y; Liu X; Song Y; Zhai C; Zhang L
    PLoS One; 2018; 13(8):e0201395. PubMed ID: 30125282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HDL Cholesterol Efflux Capacity: Cardiovascular Risk Factor and Potential Therapeutic Target.
    Bhatt A; Rohatgi A
    Curr Atheroscler Rep; 2016 Jan; 18(1):2. PubMed ID: 26710794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABCG1--a potential therapeutic target for atherosclerosis.
    Ni ZL; Zhao SP; Wu Z
    Med Hypotheses; 2007; 69(1):214-7. PubMed ID: 17459600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.