These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26634341)

  • 1. Cigarette smoke exposure impairs reverse cholesterol transport which can be minimized by treatment of hydrogen-saturated saline.
    Zong C; Song G; Yao S; Guo S; Yu Y; Yang N; Guo Z; Qin S
    Lipids Health Dis; 2015 Dec; 14():159. PubMed ID: 26634341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CETP activity variation in mice does not affect two major HDL antiatherogenic properties: macrophage-specific reverse cholesterol transport and LDL antioxidant protection.
    Rotllan N; Calpe-Berdiel L; Guillaumet-Adkins A; Süren-Castillo S; Blanco-Vaca F; Escolà-Gil JC
    Atherosclerosis; 2008 Feb; 196(2):505-13. PubMed ID: 17588582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice.
    Samyn H; Moerland M; van Gent T; van Haperen R; Grosveld F; van Tol A; de Crom R
    Atherosclerosis; 2009 Jun; 204(2):429-34. PubMed ID: 19100548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation.
    Rom O; Aviram M
    Chem Biol Interact; 2016 Nov; 259(Pt B):394-400. PubMed ID: 27163848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet.
    Shimizu T; Miura S; Tanigawa H; Kuwano T; Zhang B; Uehara Y; Saku K
    Arterioscler Thromb Vasc Biol; 2014 Oct; 34(10):2246-53. PubMed ID: 25104799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta.
    Pinto PR; Rocco DD; Okuda LS; Machado-Lima A; Castilho G; da Silva KS; Gomes DJ; Pinto Rde S; Iborra RT; Ferreira Gda S; Nakandakare ER; Machado UF; Correa-Giannella ML; Catanozi S; Passarelli M
    Lipids Health Dis; 2015 Sep; 14():109. PubMed ID: 26377330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended-Release Niacin/Laropiprant Improves Overall Efficacy of Postprandial Reverse Cholesterol Transport.
    El Khoury P; Waldmann E; Huby T; Gall J; Couvert P; Lacorte JM; Chapman J; Frisdal E; Lesnik P; Parhofer KG; Le Goff W; Guerin M
    Arterioscler Thromb Vasc Biol; 2016 Feb; 36(2):285-94. PubMed ID: 26681758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anacetrapib and dalcetrapib differentially alters HDL metabolism and macrophage-to-feces reverse cholesterol transport at similar levels of CETP inhibition in hamsters.
    Briand F; Thieblemont Q; Muzotte E; Burr N; Urbain I; Sulpice T; Johns DG
    Eur J Pharmacol; 2014 Oct; 740():135-43. PubMed ID: 25008069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet-induced dyslipidemia impairs reverse cholesterol transport in hamsters.
    Tréguier M; Briand F; Boubacar A; André A; Magot T; Nguyen P; Krempf M; Sulpice T; Ouguerram K
    Eur J Clin Invest; 2011 Sep; 41(9):921-8. PubMed ID: 21299553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newly developed apolipoprotein A-I mimetic peptide promotes macrophage reverse cholesterol transport in vivo.
    Shimizu T; Tanigawa H; Miura S; Kuwano T; Takata K; Suematsu Y; Imaizumi S; Yahiro E; Zhang B; Uehara Y; Saku K
    Int J Cardiol; 2015 Aug; 192():82-8. PubMed ID: 26005953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice.
    Westerterp M; van der Hoogt CC; de Haan W; Offerman EH; Dallinga-Thie GM; Jukema JW; Havekes LM; Rensen PC
    Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2552-9. PubMed ID: 16946130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methionine-induced hyperhomocysteinemia impairs the antioxidant ability of high-density lipoproteins without reducing in vivo macrophage-specific reverse cholesterol transport.
    Julve J; Escolà-Gil JC; Rodríguez-Millán E; Martín-Campos JM; Jauhiainen M; Quesada H; Rentería-Obregón IM; Osada J; Sánchez-Quesada JL; Blanco-Vaca F
    Mol Nutr Food Res; 2013 Oct; 57(10):1814-24. PubMed ID: 23754667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of high-density lipoprotein levels by cholesteryl ester transfer protein expression in scavenger receptor class B type I (SR-BI) knockout mice does not normalize pathologies associated with SR-BI deficiency.
    Hildebrand RB; Lammers B; Meurs I; Korporaal SJ; De Haan W; Zhao Y; Kruijt JK; Praticò D; Schimmel AW; Holleboom AG; Hoekstra M; Kuivenhoven JA; Van Berkel TJ; Rensen PC; Van Eck M
    Arterioscler Thromb Vasc Biol; 2010 Jul; 30(7):1439-45. PubMed ID: 20431066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo.
    Rotllan N; Llaverías G; Julve J; Jauhiainen M; Calpe-Berdiel L; Hernández C; Simó R; Blanco-Vaca F; Escolà-Gil JC
    Biochim Biophys Acta; 2011 Feb; 1811(2):104-10. PubMed ID: 21126601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased cholesterol efflux capacity in patients with low cholesteryl ester transfer protein plasma levels.
    Scharnagl H; Heuschneider C; Sailer S; Kleber ME; März W; Ritsch A
    Eur J Clin Invest; 2014 Apr; 44(4):395-401. PubMed ID: 24467215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Activates ATP-Binding Cassette Transporter A1-Dependent Efflux Ex Vivo and Improves High-Density Lipoprotein Function in Patients With Hypercholesterolemia: A Double-Blinded, Randomized, and Placebo-Controlled Trial.
    Song G; Lin Q; Zhao H; Liu M; Ye F; Sun Y; Yu Y; Guo S; Jiao P; Wu Y; Ding G; Xiao Q; Qin S
    J Clin Endocrinol Metab; 2015 Jul; 100(7):2724-33. PubMed ID: 25978109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of dyslipidemic hamsters to evaluate drug-induced alterations in reverse cholesterol transport.
    Briand F
    Curr Opin Investig Drugs; 2010 Mar; 11(3):289-97. PubMed ID: 20178042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CETP expression enhances liver HDL-cholesteryl ester uptake but does not alter VLDL and biliary lipid secretion.
    Harada LM; Amigo L; Cazita PM; Salerno AG; Rigotti AA; Quintão EC; Oliveira HC
    Atherosclerosis; 2007 Apr; 191(2):313-8. PubMed ID: 16806230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A(2).
    Annema W; Nijstad N; Tölle M; de Boer JF; Buijs RV; Heeringa P; van der Giet M; Tietge UJ
    J Lipid Res; 2010 Apr; 51(4):743-54. PubMed ID: 20061576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cilostazol enhances macrophage reverse cholesterol transport in vitro and in vivo.
    Nakaya K; Ayaori M; Uto-Kondo H; Hisada T; Ogura M; Yakushiji E; Takiguchi S; Terao Y; Ozasa H; Sasaki M; Komatsu T; Ohsuzu F; Ikewaki K
    Atherosclerosis; 2010 Nov; 213(1):135-41. PubMed ID: 20723893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.