These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26634383)
1. Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records. Low YS; Gallego B; Shah NH J Comp Eff Res; 2016 Mar; 5(2):179-92. PubMed ID: 26634383 [TBL] [Abstract][Full Text] [Related]
2. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions. Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047 [TBL] [Abstract][Full Text] [Related]
3. Regularized Regression Versus the High-Dimensional Propensity Score for Confounding Adjustment in Secondary Database Analyses. Franklin JM; Eddings W; Glynn RJ; Schneeweiss S Am J Epidemiol; 2015 Oct; 182(7):651-9. PubMed ID: 26233956 [TBL] [Abstract][Full Text] [Related]
4. A machine learning-based framework to identify type 2 diabetes through electronic health records. Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371 [TBL] [Abstract][Full Text] [Related]
5. Variable Selection for Confounding Adjustment in High-dimensional Covariate Spaces When Analyzing Healthcare Databases. Schneeweiss S; Eddings W; Glynn RJ; Patorno E; Rassen J; Franklin JM Epidemiology; 2017 Mar; 28(2):237-248. PubMed ID: 27779497 [TBL] [Abstract][Full Text] [Related]
6. How Confounder Strength Can Affect Allocation of Resources in Electronic Health Records. Lynch KE; Whitcomb BW; DuVall SL Perspect Health Inf Manag; 2018; 15(Winter):1d. PubMed ID: 29618960 [TBL] [Abstract][Full Text] [Related]
7. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209 [TBL] [Abstract][Full Text] [Related]
8. Inverse Probability of Treatment Weighting and Confounder Missingness in Electronic Health Record-based Analyses: A Comparison of Approaches Using Plasmode Simulation. Vader DT; Mamtani R; Li Y; Griffith SD; Calip GS; Hubbard RA Epidemiology; 2023 Jul; 34(4):520-530. PubMed ID: 37155612 [TBL] [Abstract][Full Text] [Related]
9. Performance of disease risk scores, propensity scores, and traditional multivariable outcome regression in the presence of multiple confounders. Arbogast PG; Ray WA Am J Epidemiol; 2011 Sep; 174(5):613-20. PubMed ID: 21749976 [TBL] [Abstract][Full Text] [Related]
10. [Confounder adjustment in observational comparative effectiveness researches: (1) statistical adjustment approaches for measured confounder]. Huang LL; Wei YY; Chen F Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Oct; 40(10):1304-1309. PubMed ID: 31658535 [TBL] [Abstract][Full Text] [Related]
11. Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm? Karim ME; Pang M; Platt RW Epidemiology; 2018 Mar; 29(2):191-198. PubMed ID: 29166301 [TBL] [Abstract][Full Text] [Related]
12. On the role of marginal confounder prevalence - implications for the high-dimensional propensity score algorithm. Schuster T; Pang M; Platt RW Pharmacoepidemiol Drug Saf; 2015 Sep; 24(9):1004-7. PubMed ID: 25866189 [TBL] [Abstract][Full Text] [Related]
13. The application of unsupervised deep learning in predictive models using electronic health records. Wang L; Tong L; Davis D; Arnold T; Esposito T BMC Med Res Methodol; 2020 Feb; 20(1):37. PubMed ID: 32101147 [TBL] [Abstract][Full Text] [Related]
14. Using Super Learner Prediction Modeling to Improve High-dimensional Propensity Score Estimation. Wyss R; Schneeweiss S; van der Laan M; Lendle SD; Ju C; Franklin JM Epidemiology; 2018 Jan; 29(1):96-106. PubMed ID: 28991001 [TBL] [Abstract][Full Text] [Related]
15. Some methods for heterogeneous treatment effect estimation in high dimensions. Powers S; Qian J; Jung K; Schuler A; Shah NH; Hastie T; Tibshirani R Stat Med; 2018 May; 37(11):1767-1787. PubMed ID: 29508417 [TBL] [Abstract][Full Text] [Related]
16. Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder. Weitzen S; Lapane KL; Toledano AY; Hume AL; Mor V Pharmacoepidemiol Drug Saf; 2005 Apr; 14(4):227-38. PubMed ID: 15386700 [TBL] [Abstract][Full Text] [Related]
17. From real-world electronic health record data to real-world results using artificial intelligence. Knevel R; Liao KP Ann Rheum Dis; 2023 Mar; 82(3):306-311. PubMed ID: 36150748 [TBL] [Abstract][Full Text] [Related]
18. Implementing high-dimensional propensity score principles to improve confounder adjustment in UK electronic health records. Tazare J; Smeeth L; Evans SJW; Williamson E; Douglas IJ Pharmacoepidemiol Drug Saf; 2020 Nov; 29(11):1373-1381. PubMed ID: 32926504 [TBL] [Abstract][Full Text] [Related]
19. Predictive modeling of structured electronic health records for adverse drug event detection. Zhao J; Henriksson A; Asker L; Boström H BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038 [TBL] [Abstract][Full Text] [Related]
20. Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease. Steele AJ; Denaxas SC; Shah AD; Hemingway H; Luscombe NM PLoS One; 2018; 13(8):e0202344. PubMed ID: 30169498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]