BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26634495)

  • 1. Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley.
    Yuan HJ; Luo XM; Nyima TS; Wang YL; Xu QJ; Zeng XQ
    Genet Mol Res; 2015 Nov; 14(4):15312-9. PubMed ID: 26634495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress.
    He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F
    J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and functional characterization of the HbSYR1 gene encoding a syntaxin-related protein in Tibetan hulless barley (Hordeum vulgare L. var. nudum HK. f.).
    Xu QJ; Wang YL; Wei ZX; Yuan HJ; Zeng XQ; Tashi N
    Genet Mol Res; 2017 Aug; 16(3):. PubMed ID: 28873199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.
    Zhu G; Chen G; Zhu J; Zhu Y; Lu X; Li X; Hu Y; Yan Y
    PLoS One; 2015; 10(10):e0139794. PubMed ID: 26444425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.
    Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M
    BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype.
    Wang N; Zhao J; He X; Sun H; Zhang G; Wu F
    BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley.
    Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T
    BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification, characterisation and expression profiles of calcium-dependent protein kinase genes in barley (Hordeum vulgare L.).
    Fedorowicz-Strońska O; Koczyk G; Kaczmarek M; Krajewski P; Sadowski J
    J Appl Genet; 2017 Feb; 58(1):11-22. PubMed ID: 27447459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum).
    Liang J; Zhang H; Yi L; Tang Y; Long H; Yu M; Deng G
    Genes Genomics; 2021 Dec; 43(12):1445-1461. PubMed ID: 34480266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.
    Cai J; Li P; Luo X; Chang T; Li J; Zhao Y; Xu Y
    PLoS One; 2018; 13(1):e0190559. PubMed ID: 29309420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and expression of drought-induced protein 3 (DIP3) encoding a class III chitinase in upland rice.
    Guo XL; Bai LR; Su CQ; Shi LR; Wang DW
    Genet Mol Res; 2013 Dec; 12(4):6860-70. PubMed ID: 24391034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions.
    Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N
    J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression analysis of cDNAs encoding ADP-glucose pyrophosphorylase large and small subunits from hulless barley (Hordeum vulgare L. var. nudum).
    Li D; Yang Z; Liu X; Song Z; Feng Z; He Y
    Z Naturforsch C J Biosci; 2018 Apr; 73(5-6):191-197. PubMed ID: 29455192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of microRNAs and potential targets under drought stress in barley.
    Ferdous J; Sanchez-Ferrero JC; Langridge P; Milne L; Chowdhury J; Brien C; Tricker PJ
    Plant Cell Environ; 2017 Jan; 40(1):11-24. PubMed ID: 27155357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of a barley epigenetic regulator, HvDME, in seed development and under drought.
    Kapazoglou A; Drosou V; Argiriou A; Tsaftaris AS
    BMC Plant Biol; 2013 Oct; 13():172. PubMed ID: 24175960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of drought responsive partial gene sequence(s) from Oryza sativa L. subsp. Indica.
    Mangrauthia SK; Choudhary N; Tyagi A
    Indian J Biochem Biophys; 2008 Dec; 45(6):387-92. PubMed ID: 19239124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize.
    Xia Z; Liu Q; Wu J; Ding J
    Gene; 2012 Mar; 495(2):146-53. PubMed ID: 22245611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NJ cluster analysis of the SnRK2, PYR/PYL/RCAR, and ABF genes in Tibetan hulless barley.
    Yuan HJ; Wang YL; Wei ZX; Xu QJ; Zeng XQ; Tang YW; Nyima TS
    Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27819745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Kim EY; Seo YS; Park KY; Kim SJ; Kim WT
    Gene; 2014 Nov; 552(1):146-54. PubMed ID: 25234727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and mapping of a putative stress response regulator gene in barley.
    Malatrasi M; Close TJ; Marmiroli N
    Plant Mol Biol; 2002 Sep; 50(1):143-52. PubMed ID: 12139005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.