These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26634634)

  • 1. Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.
    Yeom HW; Oh DM; Wippermann S; Schmidt WG
    ACS Nano; 2016 Jan; 10(1):810-4. PubMed ID: 26634634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Metal to Charge-Density-Wave Junctions in an Atomic Wire Array.
    Song SK; Samad A; Wippermann S; Yeom HW
    Nano Lett; 2019 Aug; 19(8):5769-5773. PubMed ID: 31276408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Dynamics of Charge Density Wave Pinning in ZrTe_{3}.
    Liu L; Zhu C; Liu ZY; Deng H; Zhou XB; Li Y; Sun Y; Huang X; Li S; Du X; Wang Z; Guan T; Mao H; Sui Y; Wu R; Yin JX; Cheng JG; Pan SH
    Phys Rev Lett; 2021 Jun; 126(25):256401. PubMed ID: 34241529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect-Selective Charge-Density-Wave Condensation in 2H-NbSe_{2}.
    Oh E; Gye G; Yeom HW
    Phys Rev Lett; 2020 Jul; 125(3):036804. PubMed ID: 32745437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional Charge-Density-Wave Transition in Monolayer 1T-TiSe2.
    Sugawara K; Nakata Y; Shimizu R; Han P; Hitosugi T; Sato T; Takahashi T
    ACS Nano; 2016 Jan; 10(1):1341-5. PubMed ID: 26624791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorbate-induced pinning of a charge-density wave in a quasi-1D metallic chains: Na on the In/Si(111)-(4x1) surface.
    Lee SS; Ahn JR; Kim ND; Min JH; Hwang CG; Chung JW; Yeom HW; Ryjkov SV; Hasegawa S
    Phys Rev Lett; 2002 May; 88(19):196401. PubMed ID: 12005651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Resolution Cryogenic Scanning Transmission Electron Microscopy for Quantum Materials.
    Bianco E; Kourkoutis LF
    Acc Chem Res; 2021 Sep; 54(17):3277-3287. PubMed ID: 34415721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-structure engineering of gold atomic wires on silicon by controlled doping.
    Choi WH; Kang PG; Ryang KD; Yeom HW
    Phys Rev Lett; 2008 Mar; 100(12):126801. PubMed ID: 18517895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of a Strained Atomic Wire Superlattice.
    Song I; Goh JS; Lee SH; Jung SW; Shin JS; Yamane H; Kosugi N; Yeom HW
    ACS Nano; 2015 Nov; 9(11):10621-7. PubMed ID: 26446292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological solitons versus nonsolitonic phase defects in a quasi-one-dimensional charge-density wave.
    Kim TH; Yeom HW
    Phys Rev Lett; 2012 Dec; 109(24):246802. PubMed ID: 23368361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexagonal Domain-Like Charge Density Wave Phase of TaS2 Determined by Scanning Tunneling Microscopy.
    Wu XL; Lieber CM
    Science; 1989 Mar; 243(4899):1703-5. PubMed ID: 17751279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-scale strain manipulation of a charge density wave.
    Gao S; Flicker F; Sankar R; Zhao H; Ren Z; Rachmilowitz B; Balachandar S; Chou F; Burch KS; Wang Z; van Wezel J; Zeljkovic I
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6986-6990. PubMed ID: 29915084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scanning tunneling microscopy study of a new superstructure around defects created by tip-sample interaction on 2H- NbSe(2).
    Wang H; Lee J; Dreyer M; Barker BI
    J Phys Condens Matter; 2009 Jul; 21(26):265005. PubMed ID: 21828469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2).
    Hovden R; Tsen AW; Liu P; Savitzky BH; El Baggari I; Liu Y; Lu W; Sun Y; Kim P; Pasupathy AN; Kourkoutis LF
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11420-11424. PubMed ID: 27681627
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Do E; Park JW; Stetsovych O; Jelinek P; Yeom HW
    ACS Nano; 2022 Apr; 16(4):6598-6604. PubMed ID: 35427105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect-mediated condensation of a charge density wave.
    Weitering HH; Carpinelli JM; Melechko AV; Zhang J; Bartkowiak M; Plummer EW
    Science; 1999 Sep; 285(5436):2107-10. PubMed ID: 10497124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic structure and Mott nature of the insulating charge density wave phase of 1T-TaS
    Petkov V; Peralta JE; Aoun B; Ren Y
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35688141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially Extended Charge Density Wave Switching by Nanoscale Local Manipulation in a VTe
    Chazarin U; Lezoualc'h M; Karn A; Chou JP; Pai WW; Chacon C; Girard Y; Repain V; Bellec A; Rousset S; González C; Smogunov A; Lagoute J; Dappe YJ
    Nano Lett; 2024 Mar; 24(11):3470-3475. PubMed ID: 38451177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Observation of One-Dimensional Peierls-type Charge Density Wave in Twin Boundaries of Monolayer MoTe
    Wang L; Wu Y; Yu Y; Chen A; Li H; Ren W; Lu S; Ding S; Yang H; Xue QK; Li FS; Wang G
    ACS Nano; 2020 Jul; 14(7):8299-8306. PubMed ID: 32579335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing the Anomalous Charge Density Wave States in Graphene/NbSe
    Chen Y; Wu L; Xu H; Cong C; Li S; Feng S; Zhang H; Zou C; Shang J; Yang SA; Loh KP; Huang W; Yu T
    Adv Mater; 2020 Nov; 32(45):e2003746. PubMed ID: 33002238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.