These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 26634780)
41. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Carmona ER; Escobar B; Vales G; Marcos R Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144 [TBL] [Abstract][Full Text] [Related]
42. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Wang Z; Li J; Zhao J; Xing B Environ Sci Technol; 2011 Jul; 45(14):6032-40. PubMed ID: 21671609 [TBL] [Abstract][Full Text] [Related]
43. Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles. Pradhan A; Seena S; Schlosser D; Gerth K; Helm S; Dobritzsch M; Krauss GJ; Dobritzsch D; Pascoal C; Cássio F Environ Toxicol Chem; 2015 Apr; 34(4):923-30. PubMed ID: 25565283 [TBL] [Abstract][Full Text] [Related]
44. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. De Jong WH; De Rijk E; Bonetto A; Wohlleben W; Stone V; Brunelli A; Badetti E; Marcomini A; Gosens I; Cassee FR Nanotoxicology; 2019 Feb; 13(1):50-72. PubMed ID: 30451559 [TBL] [Abstract][Full Text] [Related]
45. Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Wang T; Long X; Chen X; Liu Y; Liu Z; Han S; Yan S Nanotoxicology; 2017 Mar; 11(2):236-246. PubMed ID: 28145785 [TBL] [Abstract][Full Text] [Related]
46. Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Di Bucchianico S; Fabbrizi MR; Misra SK; Valsami-Jones E; Berhanu D; Reip P; Bergamaschi E; Migliore L Mutagenesis; 2013 May; 28(3):287-99. PubMed ID: 23462852 [TBL] [Abstract][Full Text] [Related]
47. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Yue L; Zhao J; Yu X; Lv K; Wang Z; Xing B Environ Pollut; 2018 Dec; 243(Pt A):543-552. PubMed ID: 30223239 [TBL] [Abstract][Full Text] [Related]
48. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Hazrati R; Zare N; Asghari R; Sheikhzadeh P; Johari-Ahar M Appl Microbiol Biotechnol; 2022 Sep; 106(18):6017-6031. PubMed ID: 35972514 [TBL] [Abstract][Full Text] [Related]
49. Effects of Copper Oxide Nanoparticles on Tissue Accumulation and Antioxidant Enzymes of Galleria mellonella L. Sezer Tuncsoy B; Tuncsoy M; Gomes T; Sousa V; Teixeira MR; Bebianno MJ; Ozalp P Bull Environ Contam Toxicol; 2019 Mar; 102(3):341-346. PubMed ID: 30600390 [TBL] [Abstract][Full Text] [Related]
50. A novel assessment system of toxicity and stability of CuO nanoparticles via copper super sensitive Saccharomyces cerevisiae mutants. Chen X; Zhang R; Sun J; Simth N; Zhao M; Lee J; Ke Q; Wu X Toxicol In Vitro; 2020 Dec; 69():104969. PubMed ID: 32805373 [TBL] [Abstract][Full Text] [Related]
51. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Sun Y; Zhang G; He Z; Wang Y; Cui J; Li Y Int J Nanomedicine; 2016; 11():905-18. PubMed ID: 27022258 [TBL] [Abstract][Full Text] [Related]
52. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells. Joshi A; Naatz H; Faber K; Pokhrel S; Dringen R Neurochem Res; 2020 Apr; 45(4):809-824. PubMed ID: 31997104 [TBL] [Abstract][Full Text] [Related]
53. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. Mavil-Guerrero E; Vazquez-Duhalt R; Juarez-Moreno K Chemosphere; 2024 Jan; 347():140713. PubMed ID: 37981015 [TBL] [Abstract][Full Text] [Related]
54. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Tang Y; He R; Zhao J; Nie G; Xu L; Xing B Environ Pollut; 2016 May; 212():605-614. PubMed ID: 27016889 [TBL] [Abstract][Full Text] [Related]
55. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests. Scola S; Blasco J; Campana O Sci Total Environ; 2021 Mar; 760():143886. PubMed ID: 33340740 [TBL] [Abstract][Full Text] [Related]
56. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. Ude VC; Brown DM; Stone V; Johnston HJ J Nanobiotechnology; 2019 May; 17(1):70. PubMed ID: 31113462 [TBL] [Abstract][Full Text] [Related]
57. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458 [TBL] [Abstract][Full Text] [Related]
58. GC-MS metabolomics analysis of mesenchymal stem cells treated with copper oxide nanoparticles. Murgia A; Mancuso L; Manis C; Caboni P; Cao G Toxicol Mech Methods; 2016 Oct; 26(8):611-619. PubMed ID: 27552400 [TBL] [Abstract][Full Text] [Related]
59. Influence of copper treatment on bioaccumulation, survival, behavior, and fecundity in the fruit fly Drosophila melanogaster: Toxicity of copper oxide nanoparticles differ from dissolved copper. Budiyanti DS; Moeller ME; Thit A Environ Toxicol Pharmacol; 2022 May; 92():103852. PubMed ID: 35307570 [TBL] [Abstract][Full Text] [Related]
60. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Shaw AK; Hossain Z Chemosphere; 2013 Oct; 93(6):906-15. PubMed ID: 23791109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]