BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 26634811)

  • 1. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene sculpturene nanopores for DNA nucleobase sensing.
    Sadeghi H; Algaragholy L; Pope T; Bailey S; Visontai D; Manrique D; Ferrer J; Garcia-Suarez V; Sangtarash S; Lambert CJ
    J Phys Chem B; 2014 Jun; 118(24):6908-14. PubMed ID: 24849015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic and electronic transport properties of DNA translocation through graphene nanopores.
    Avdoshenko SM; Nozaki D; Gomes da Rocha C; González JW; Lee MH; Gutierrez R; Cuniberti G
    Nano Lett; 2013 May; 13(5):1969-76. PubMed ID: 23586585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation on DNA sequencing using functionalized graphene nanopores.
    Yu YS; Lu X; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2018 Apr; 20(14):9063-9069. PubMed ID: 29446423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast DNA sequencing with a graphene-based nanochannel device.
    Min SK; Kim WY; Cho Y; Kim KS
    Nat Nanotechnol; 2011 Mar; 6(3):162-5. PubMed ID: 21297626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore.
    de Souza FAL; Sivaraman G; Fyta M; Scheicher RH; Scopel WL; Amorim RG
    Nanoscale; 2020 Sep; 12(35):18289-18295. PubMed ID: 32857078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA translocation through single-layer boron nitride nanopores.
    Gu Z; Zhang Y; Luan B; Zhou R
    Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Nanopores for Electronic Recognition of DNA Methylation.
    Sarathy A; Qiu H; Leburton JP
    J Phys Chem B; 2017 Apr; 121(15):3757-3763. PubMed ID: 28035832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations.
    H H; Mallajosyula SS
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55095-55108. PubMed ID: 37965826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of base-pair mismatches in DNA using graphene-based nanopore device.
    Kundu S; Karmakar SN
    Nanotechnology; 2016 Apr; 27(13):135101. PubMed ID: 26894508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.
    Wasfi A; Awwad F; Ayesh AI
    IEEE Trans Nanobioscience; 2022 Jul; 21(3):347-357. PubMed ID: 33945483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing graphene nanopores for sequencing DNA.
    Wells DB; Belkin M; Comer J; Aksimentiev A
    Nano Lett; 2012 Aug; 12(8):4117-23. PubMed ID: 22780094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore.
    Balasubramanian R; Pal S; Rao A; Naik A; Chakraborty B; Maiti PK; Varma MM
    ACS Appl Bio Mater; 2021 Jan; 4(1):451-461. PubMed ID: 35014296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interband plasmon-enhanced optical absorption of DNA nucleobases through the graphene nanopore.
    Faramarzi V; Ahmadi V; Heidari M; Fotouhi B; Hwang MT
    Opt Lett; 2022 Jan; 47(1):194-197. PubMed ID: 34951915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.