These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26634994)

  • 1. Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions.
    Yang T; Liu X
    Sci Rep; 2015 Dec; 5():17783. PubMed ID: 26634994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM
    Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum.
    Kuźniak E; Kornas A; Kaźmierczak A; Rozpądek P; Nosek M; Kocurek M; Zellnig G; Müller M; Miszalski Z
    Ann Bot; 2016 Jun; 117(7):1141-51. PubMed ID: 27091507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Transcriptome Analysis of
    Yang T; Liu X
    Plant Mol Biol Report; 2016; 34():136-145. PubMed ID: 26843780
    [No Abstract]   [Full Text] [Related]  

  • 5. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia.
    Barrera Zambrano VA; Lawson T; Olmos E; Fernández-García N; Borland AM
    J Exp Bot; 2014 Jul; 65(13):3513-23. PubMed ID: 24510939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism.
    Taybi T; Nimmo HG; Borland AM
    Plant Physiol; 2004 May; 135(1):587-98. PubMed ID: 15133148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species.
    Griffiths H; Robe WE; Girnus J; Maxwell K
    J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 starvation experiments provide support for the carbon-limited hypothesis on the evolution of CAM-like behaviour in Isoëtes.
    Suissa JS; Green WA
    Ann Bot; 2021 Jan; 127(1):135-141. PubMed ID: 32827211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO(2)-concentrating: consequences in crassulacean acid metabolism.
    Lüttge U
    J Exp Bot; 2002 Nov; 53(378):2131-42. PubMed ID: 12379779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crassulacean acid metabolism: plastic, fantastic.
    Dodd AN; Borland AM; Haslam RP; Griffiths H; Maxwell K
    J Exp Bot; 2002 Apr; 53(369):569-80. PubMed ID: 11886877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN; Griffiths H
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of metabolic processes in plants with Crassulacean acid metabolism.
    Borland AM; Taybi T
    J Exp Bot; 2004 May; 55(400):1255-65. PubMed ID: 15073222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light.
    Shao H; Gontero B; Maberly SC; Jiang HS; Cao Y; Li W; Huang WM
    J Exp Bot; 2017 Jun; 68(14):3985-3995. PubMed ID: 28369629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS.
    Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A
    Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.
    Winter K; Holtum JA
    J Exp Bot; 2014 Jul; 65(13):3425-41. PubMed ID: 24642847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater CAM photosynthesis elucidated by Isoetes genome.
    Wickell D; Kuo LY; Yang HP; Dhabalia Ashok A; Irisarri I; Dadras A; de Vries S; de Vries J; Huang YM; Li Z; Barker MS; Hartwick NT; Michael TP; Li FW
    Nat Commun; 2021 Nov; 12(1):6348. PubMed ID: 34732722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process?
    Roberts A; Griffiths H; Borland AM; Reinert F
    Oecologia; 1996 Apr; 106(1):28-38. PubMed ID: 28307154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances.
    Kasai M
    Physiol Plant; 2008 Sep; 134(1):216-26. PubMed ID: 18435694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis.
    Pedersen O; Rich SM; Pulido C; Cawthray GR; Colmer TD
    New Phytol; 2011 Apr; 190(2):332-9. PubMed ID: 21062288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review.
    Klavsen SK; Madsen TV; Maberly SC
    Photosynth Res; 2011 Sep; 109(1-3):269-79. PubMed ID: 21308411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.