These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26634994)

  • 21. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review.
    Klavsen SK; Madsen TV; Maberly SC
    Photosynth Res; 2011 Sep; 109(1-3):269-79. PubMed ID: 21308411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethylene insensitivity results in down-regulation of rubisco expression and photosynthetic capacity in tobacco.
    Tholen D; Pons TL; Voesenek LA; Poorter H
    Plant Physiol; 2007 Jul; 144(3):1305-15. PubMed ID: 17535822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study on diurnal changes in metabolite levels in the leaves of three crassulacean acid metabolism (CAM) species, Ananas comosus, Kalanchoë daigremontiana and K. pinnata.
    Chen LS; Lin Q; Nose A
    J Exp Bot; 2002 Feb; 53(367):341-50. PubMed ID: 11807138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High light-induced switch from C(3)-photosynthesis to Crassulacean acid metabolism is mediated by UV-A/blue light.
    Grams TE; Thiel S
    J Exp Bot; 2002 Jun; 53(373):1475-83. PubMed ID: 12021295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L.
    Richardson K; Griffiths H; Reed ML; Raven JA; Griffiths NM
    Oecologia; 1984 Jan; 61(1):115-121. PubMed ID: 28311393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inorganic carbon utilization: A target of silver nanoparticle toxicity on a submerged macrophyte.
    Wang W; Yuan L; Zhou J; Zhu X; Liao Z; Yin L; Li W; Jiang HS
    Environ Pollut; 2023 Feb; 318():120906. PubMed ID: 36549447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordination between leaf CO
    Galmés J; Molins A; Flexas J; Conesa MÀ
    Plant Cell Environ; 2017 Oct; 40(10):2081-2094. PubMed ID: 28622707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco.
    Whitney SM; Andrews TJ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14738-43. PubMed ID: 11724961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ear of durum wheat under water stress: water relations and photosynthetic metabolism.
    Tambussi EA; Nogués S; Araus JL
    Planta; 2005 Jun; 221(3):446-58. PubMed ID: 15645303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different CO
    Huang WM; Shao H; Zhou SN; Zhou Q; Fu WL; Zhang T; Jiang HS; Li W; Gontero B; Maberly SC
    Photosynth Res; 2018 Nov; 138(2):219-232. PubMed ID: 30078074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas Exchange Characteristics of the Submerged Aquatic Crassulacean Acid Metabolism Plant, Isoetes howellii.
    Keeley JE; Bowes G
    Plant Physiol; 1982 Nov; 70(5):1455-8. PubMed ID: 16662697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthetic acclimation to elevated CO2 in relation to Rubisco gene expression in three C3 species.
    Pandurangam V; Sharma-Natu P; Sreekanth B; Ghildiyal MC
    Indian J Exp Biol; 2006 May; 44(5):408-15. PubMed ID: 16708896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1.
    Sun J; Zhang J; Larue CT; Huber SC
    Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.
    Hartzell S; Bartlett MS; Virgin L; Porporato A
    J Theor Biol; 2015 Mar; 368():83-94. PubMed ID: 25542971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing rubisco content in rice leaves.
    Fukayama H; Ueguchi C; Nishikawa K; Katoh N; Ishikawa C; Masumoto C; Hatanaka T; Misoo S
    Plant Cell Physiol; 2012 Jun; 53(6):976-86. PubMed ID: 22470057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What does the RuBisCO activity tell us about a C
    Gonçalves AZ; Latansio S; Detmann KC; Marabesi MA; Neto AAC; Aidar MPM; DaMatta FM; Mercier H
    Plant Physiol Biochem; 2020 Feb; 147():172-180. PubMed ID: 31865163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.
    Sudo E; Suzuki Y; Makino A
    Plant Cell Physiol; 2014 Nov; 55(11):1905-11. PubMed ID: 25231963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.