These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 26635202)
1. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202 [TBL] [Abstract][Full Text] [Related]
2. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Fan X; Peng H; Li H; Yan Y J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly(amino acid) composite cervical vertebra cage. Xiong Y; Li H; Zhou C; Yang X; Song Y; Qing Y; Yan Y J Biomater Sci Polym Ed; 2014; 25(16):1842-55. PubMed ID: 25162474 [TBL] [Abstract][Full Text] [Related]
4. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials. Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766 [TBL] [Abstract][Full Text] [Related]
5. Developing novel Ca-zeolite/poly(amino acid) composites with hemostatic activity for bone substitute applications. Zhong Y; Chen X; Peng H; Ding Z; Yan Y J Biomater Sci Polym Ed; 2018 Nov; 29(16):1994-2010. PubMed ID: 30474514 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo. Wang P; Liu P; Peng H; Luo X; Yuan H; Zhang J; Yan Y J Biomater Sci Polym Ed; 2016 Aug; 27(11):1170-86. PubMed ID: 27126299 [TBL] [Abstract][Full Text] [Related]
7. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair. Fan X; Li L; Zhu H; Yan L; Zhu S; Yan Y Biomed Mater; 2021 Feb; 16(2):025004. PubMed ID: 33599212 [TBL] [Abstract][Full Text] [Related]
8. Preparation and degradation characteristic study of bone repair composite of DL-polylactic acid/hydroxyapatite/decalcifying bone matrix. Zhao J; Liao W; Wang Y; Pan J; Liu F Chin J Traumatol; 2002 Dec; 5(6):369-73. PubMed ID: 12443580 [TBL] [Abstract][Full Text] [Related]
9. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Li H; Yang L; Dong X; Gu Y; Lv G; Yan Y J Mater Sci Mater Med; 2014 May; 25(5):1257-65. PubMed ID: 24488438 [TBL] [Abstract][Full Text] [Related]
10. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Shikinami Y; Okuno M Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712 [TBL] [Abstract][Full Text] [Related]
11. Composite scaffolds of dicalcium phosphate anhydrate /multi-(amino acid) copolymer: in vitro degradability and osteoblast biocompatibility. Yao Q; Ye J; Xu Q; Mo A; Gong P J Biomater Sci Polym Ed; 2015; 26(4):211-23. PubMed ID: 25554826 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. Zhang X; Zhang Y; Zhang X; Wang Y; Wang J; Lu M; Li H J Mech Behav Biomed Mater; 2015 Feb; 42():267-73. PubMed ID: 25523977 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P Biomatter; 2014; 4():e27664. PubMed ID: 24441389 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold. Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972 [TBL] [Abstract][Full Text] [Related]
15. Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery. Li H; Tao S; Yan Y; Lv G; Gu Y; Luo X; Yang L; Wei J J Biomater Sci Polym Ed; 2014; 25(11):1194-210. PubMed ID: 24927061 [TBL] [Abstract][Full Text] [Related]
16. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Guo H; Wei J; Liu CS Biomed Mater; 2006 Dec; 1(4):193-7. PubMed ID: 18458405 [TBL] [Abstract][Full Text] [Related]
17. Effects of mechanical loading on the degradability and mechanical properties of the nanocalcium-deficient hydroxyapatite-multi(amino acid) copolymer composite membrane tube for guided bone regeneration. Duan H; Yang H; Xiong Y; Zhang B; Ren C; Min L; Zhang W; Yan Y; Li H; Pei F; Tu C Int J Nanomedicine; 2013; 8():2801-7. PubMed ID: 23946651 [TBL] [Abstract][Full Text] [Related]
18. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Wei X; Zhang Z; Wang L; Yan L; Yan Y; Wang C; Peng H; Fan X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38537374 [TBL] [Abstract][Full Text] [Related]
19. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Subramaniam S; Fang YH; Sivasubramanian S; Lin FH; Lin CP Biomaterials; 2016 Jan; 74():99-108. PubMed ID: 26454048 [TBL] [Abstract][Full Text] [Related]
20. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications. Yang G; Liu J; Li F; Pan Z; Ni X; Shen Y; Xu H; Huang Q Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():70-6. PubMed ID: 24411353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]