These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26635598)

  • 1. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.
    Dura-Bernal S; Zhou X; Neymotin SA; Przekwas A; Francis JT; Lytton WW
    Front Neurorobot; 2015; 9():13. PubMed ID: 26635598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm.
    Dura-Bernal S; Chadderdon GL; Neymotin SA; Francis JT; Lytton WW
    Pattern Recognit Lett; 2014 Jan; 36():204-212. PubMed ID: 26709323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis.
    Dura-Bernal S; Neymotin SA; Kerr CC; Sivagnanam S; Majumdar A; Francis JT; Lytton WW
    IBM J Res Dev; 2017; 61(2-3):6.1-6.14. PubMed ID: 29200477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm.
    Dura-Bernal S; Li K; Neymotin SA; Francis JT; Principe JC; Lytton WW
    Front Neurosci; 2016; 10():28. PubMed ID: 26903796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex.
    Neymotin SA; Chadderdon GL; Kerr CC; Francis JT; Lytton WW
    Neural Comput; 2013 Dec; 25(12):3263-93. PubMed ID: 24047323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 9. Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles.
    Helms Tillery SI; Taylor DM; Schwartz AB
    Rev Neurosci; 2003; 14(1-2):107-19. PubMed ID: 12929922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parieto-frontal coding of reaching: an integrated framework.
    Burnod Y; Baraduc P; Battaglia-Mayer A; Guigon E; Koechlin E; Ferraina S; Lacquaniti F; Caminiti R
    Exp Brain Res; 1999 Dec; 129(3):325-46. PubMed ID: 10591906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.
    Kocaturk M; Gulcur HO; Canbeyli R
    Front Neurorobot; 2015; 9():8. PubMed ID: 26321943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Networks for Modeling Neural Spiking in S1 Cortex.
    Lucas A; Tomlinson T; Rohani N; Chowdhury R; Solla SA; Katsaggelos AK; Miller LE
    Front Syst Neurosci; 2019; 13():13. PubMed ID: 30983978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to control a brain-machine interface for reaching and grasping by primates.
    Carmena JM; Lebedev MA; Crist RE; O'Doherty JE; Santucci DM; Dimitrov DF; Patil PG; Henriquez CS; Nicolelis MA
    PLoS Biol; 2003 Nov; 1(2):E42. PubMed ID: 14624244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards real-time communication between
    Lee G; Matsunaga A; Dura-Bernal S; Zhang W; Lytton WW; Francis JT; Fortes JA
    J Comput Surg; 2014 Nov; 3(12):1-23. PubMed ID: 26702394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity neurons improve performance more than goal or position neurons do in a simulated closed-loop BCI arm-reaching task.
    Liao JY; Kirsch RF
    Front Comput Neurosci; 2015; 9():84. PubMed ID: 26236225
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.