These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26635773)

  • 41. Mass spectrometry-based proteomics and its application to studies of Porphyromonas gingivalis invasion and pathogenicity.
    Lamont RJ; Meila M; Xia Q; Hackett M
    Infect Disord Drug Targets; 2006 Sep; 6(3):311-25. PubMed ID: 16918489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
    Marionneau C; Abriel H
    J Mol Cell Cardiol; 2015 May; 82():36-47. PubMed ID: 25748040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.
    Emery SJ; Lacey E; Haynes PA
    Mol Biochem Parasitol; 2016 Aug; 208(2):96-112. PubMed ID: 27449313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ProteoModlR for functional proteomic analysis.
    Cifani P; Shakiba M; Chhangawala S; Kentsis A
    BMC Bioinformatics; 2017 Mar; 18(1):153. PubMed ID: 28259147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola.
    Mukherjee AK; Carp MJ; Zuchman R; Ziv T; Horwitz BA; Gepstein S
    J Proteomics; 2010 Feb; 73(4):709-20. PubMed ID: 19857612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial Interactions in Plants: Perspectives and Applications of Proteomics.
    Imam J; Shukla P; Mandal NP; Variar M
    Curr Protein Pept Sci; 2017; 18(9):956-965. PubMed ID: 27875969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.
    Hoehenwarter W; Chen Y; Recuenco-Munoz L; Wienkoop S; Weckwerth W
    Amino Acids; 2011 Jul; 41(2):329-41. PubMed ID: 20602127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story.
    Bhattacharjee S; Noor JJ; Gohain B; Gulabani H; Dnyaneshwar IK; Singla A
    IUBMB Life; 2015 Jul; 67(7):524-32. PubMed ID: 26177826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.
    Nyman TA; Lorey MB; Cypryk W; Matikainen S
    Expert Rev Proteomics; 2017 May; 14(5):395-407. PubMed ID: 28406322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches.
    Seo J; Lee KJ
    J Biochem Mol Biol; 2004 Jan; 37(1):35-44. PubMed ID: 14761301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring host responses to the gut microbiota.
    Lichtman JS; Sonnenburg JL; Elias JE
    ISME J; 2015 Sep; 9(9):1908-15. PubMed ID: 26057846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Systems-wide proteomic characterization of combinatorial post-translational modification patterns.
    Young NL; Plazas-Mayorca MD; Garcia BA
    Expert Rev Proteomics; 2010 Feb; 7(1):79-92. PubMed ID: 20121478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Standardization approaches in absolute quantitative proteomics with mass spectrometry.
    Calderón-Celis F; Encinar JR; Sanz-Medel A
    Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry.
    Prus G; Hoegl A; Weinert BT; Choudhary C
    Trends Biochem Sci; 2019 Nov; 44(11):943-960. PubMed ID: 31296352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Post-translational modifications are key players of the Legionella pneumophila infection strategy.
    Michard C; Doublet P
    Front Microbiol; 2015; 6():87. PubMed ID: 25713573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction.
    Xie K; Bunse C; Marcus K; Leichert LI
    Redox Biol; 2019 Feb; 21():101087. PubMed ID: 30682706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Beyond gene expression: the impact of protein post-translational modifications in bacteria.
    Cain JA; Solis N; Cordwell SJ
    J Proteomics; 2014 Jan; 97():265-86. PubMed ID: 23994099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial Pathogenesis in the Era of Spatial Omics.
    Lempke S; May D; Ewald SE
    Infect Immun; 2023 Jul; 91(7):e0044222. PubMed ID: 37255461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current approaches on viral infection: proteomics and functional validations.
    Zheng J; Tan BH; Sugrue R; Tang K
    Front Microbiol; 2012; 3():393. PubMed ID: 23162545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.