These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26636072)

  • 1. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.
    Hoang NV; Furtado A; Botha FC; Simmons BA; Henry RJ
    Front Bioeng Biotechnol; 2015; 3():182. PubMed ID: 26636072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentials, Challenges, and Genetic and Genomic Resources for Sugarcane Biomass Improvement.
    Kandel R; Yang X; Song J; Wang J
    Front Plant Sci; 2018; 9():151. PubMed ID: 29503654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
    Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F
    Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations.
    Mohan C; Easterling M; Yau YY
    Sugar Tech; 2022; 24(1):369-385. PubMed ID: 34667393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency.
    Hodgson-Kratky K; Papa G; Rodriguez A; Stavila V; Simmons B; Botha F; Furtado A; Henry R
    Biotechnol Biofuels; 2019; 12():247. PubMed ID: 31636706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.
    Jung JH; Vermerris W; Gallo M; Fedenko JR; Erickson JE; Altpeter F
    Plant Biotechnol J; 2013 Aug; 11(6):709-16. PubMed ID: 23551338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying plants for biofuel and biomaterial production.
    Furtado A; Lupoi JS; Hoang NV; Healey A; Singh S; Simmons BA; Henry RJ
    Plant Biotechnol J; 2014 Dec; 12(9):1246-58. PubMed ID: 25431201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugarcane-Biorefinery.
    Vaz S
    Adv Biochem Eng Biotechnol; 2019; 166():125-136. PubMed ID: 28303295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
    van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM
    BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin.
    Hodgson-Kratky K; Perlo V; Furtado A; Choudhary H; Gladden JM; Simmons BA; Botha F; Henry RJ
    Plant Mol Biol; 2021 May; 106(1-2):173-192. PubMed ID: 33738678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards much more efficient biofuel crops - can sugarcane pave the way?
    Tammisola J
    GM Crops; 2010; 1(4):181-98. PubMed ID: 21844673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Transformation of Sugarcane, Current Status and Future Prospects.
    Budeguer F; Enrique R; Perera MF; Racedo J; Castagnaro AP; Noguera AS; Welin B
    Front Plant Sci; 2021; 12():768609. PubMed ID: 34858464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the conversion of cellulose present in lignocellulosic biomass for biofuel production.
    Roberto JA; Costa JĂșnior EFD; Costa AOSD
    An Acad Bras Cienc; 2023; 95(3):e20220635. PubMed ID: 37909561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting EST databases for the development and characterisation of 3425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses.
    Chandra A; Jain R; Solomon S; Shrivastava S; Roy AK
    BMC Res Notes; 2013 Feb; 6():47. PubMed ID: 23379891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofuel and energy crops: high-yield Saccharinae take center stage in the post-genomics era.
    de Siqueira Ferreira S; Nishiyama MY; Paterson AH; Souza GM
    Genome Biol; 2013 Jun; 14(6):210. PubMed ID: 23805917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic improvement of plants for enhanced bio-ethanol production.
    Saha S; Ramachandran S
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):36-44. PubMed ID: 22779439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.