These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1116 related articles for article (PubMed ID: 26636198)

  • 1. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening.
    Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2447-64. PubMed ID: 26616625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Born Solvation Model SM12.
    Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2013 Jan; 9(1):609-20. PubMed ID: 26589059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 Apr; 113(14):4538-43. PubMed ID: 19253989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Comput Aided Mol Des; 2010 Apr; 24(4):317-33. PubMed ID: 20358259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal approach to solvation modeling.
    Cramer CJ; Truhlar DG
    Acc Chem Res; 2008 Jun; 41(6):760-8. PubMed ID: 18512970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization Effects in Aqueous and Nonaqueous Solutions.
    Marenich AV; Olson RM; Chamberlin AC; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2055-67. PubMed ID: 26636201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.
    Zanith CC; Pliego JR
    J Comput Aided Mol Des; 2015 Mar; 29(3):217-24. PubMed ID: 25398641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting aqueous free energies of solvation as functions of temperature.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2006 Mar; 110(11):5665-75. PubMed ID: 16539512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell.
    Liu J; Kelly CP; Goren AC; Marenich AV; Cramer CJ; Truhlar DG; Zhan CG
    J Chem Theory Comput; 2010 Mar; 6(4):1109-1117. PubMed ID: 20419072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of a temperature-dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur.
    Chamberlin AC; Cramer CJ; Truhlar DG
    J Phys Chem B; 2008 Mar; 112(10):3024-39. PubMed ID: 18281971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VBSM: a solvation model based on valence bond theory.
    Su P; Wu W; Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem A; 2008 Dec; 112(50):12761-8. PubMed ID: 18671376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a transferable nonelectrostatic model for continuum solvation: The electrostatic and nonelectrostatic energy correction model.
    Vassetti D; Labat F
    J Comput Chem; 2022 Jul; 43(20):1372-1387. PubMed ID: 35678272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving solvation energy predictions using the SMD solvation method and semiempirical electronic structure methods.
    Kromann JC; Steinmann C; Jensen JH
    J Chem Phys; 2018 Sep; 149(10):104102. PubMed ID: 30219007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.