These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26636351)

  • 1. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.
    Sedeh RS; Pan K; Adendorff MR; Hallatschek O; Bathe KJ; Bathe M
    J Chem Theory Comput; 2016 Jan; 12(1):261-73. PubMed ID: 26636351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and conformational dynamics of scaffolded DNA origami nanoparticles.
    Pan K; Bricker WP; Ratanalert S; Bathe M
    Nucleic Acids Res; 2017 Jun; 45(11):6284-6298. PubMed ID: 28482032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based model for light-harvesting properties of nucleic acid nanostructures.
    Pan K; Boulais E; Yang L; Bathe M
    Nucleic Acids Res; 2014 Feb; 42(4):2159-70. PubMed ID: 24311563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation.
    Maffeo C; Yoo J; Aksimentiev A
    Nucleic Acids Res; 2016 Apr; 44(7):3013-9. PubMed ID: 26980283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Exciton Dynamics with Synthetic DNA Scaffolds.
    Hart SM; Gorman J; Bathe M; Schlau-Cohen GS
    Acc Chem Res; 2023 Aug; 56(15):2051-2061. PubMed ID: 37345736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems.
    Yoo J; Li CY; Slone SM; Maffeo C; Aksimentiev A
    Methods Mol Biol; 2018; 1811():209-229. PubMed ID: 29926456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution.
    Lee JY; Lee JG; Yun G; Lee C; Kim YJ; Kim KS; Kim TH; Kim DN
    ACS Nano; 2021 Jan; 15(1):1002-1015. PubMed ID: 33410664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations.
    Shi Z; Castro CE; Arya G
    ACS Nano; 2017 May; 11(5):4617-4630. PubMed ID: 28423273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies.
    Pan K; Kim DN; Zhang F; Adendorff MR; Yan H; Bathe M
    Nat Commun; 2014 Dec; 5():5578. PubMed ID: 25470497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.
    Chatzieleftheriou S; Adendorff MR; Lagaros ND
    J Chem Inf Model; 2016 Oct; 56(10):1963-1978. PubMed ID: 27653992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation.
    Roodhuizen JAL; Hendrikx PJTM; Hilbers PAJ; de Greef TFA; Markvoort AJ
    ACS Nano; 2019 Sep; 13(9):10798-10809. PubMed ID: 31502824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall and internal dynamics of DNA as monitored by five-atom-tethered spin labels.
    Keyes RS; Bobst EV; Cao YY; Bobst AM
    Biophys J; 1997 Jan; 72(1):282-90. PubMed ID: 8994613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
    Bruetzel LK; Walker PU; Gerling T; Dietz H; Lipfert J
    Nano Lett; 2018 Apr; 18(4):2672-2676. PubMed ID: 29554806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular threading and tunable molecular recognition on DNA origami nanostructures.
    Wu N; Czajkowsky DM; Zhang J; Qu J; Ye M; Zeng D; Zhou X; Hu J; Shao Z; Li B; Fan C
    J Am Chem Soc; 2013 Aug; 135(33):12172-5. PubMed ID: 23924191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure.
    Suma A; Stopar A; Nicholson AW; Castronovo M; Carnevale V
    Nucleic Acids Res; 2020 May; 48(9):4672-4680. PubMed ID: 32043111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocontrolled DNA Origami Assembly by Using Two Photoswitches.
    Mishra S; Park S; Emura T; Kumi H; Sugiyama H; Endo M
    Chemistry; 2021 Jan; 27(2):778-784. PubMed ID: 33063405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.