BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26636475)

  • 1. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.
    Wang L; Qin L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2016 Jan; 50(1):259-68. PubMed ID: 26636475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy.
    Wang L; Putnis CV; King HE; Hövelmann J; Ruiz-Agudo E; Putnis A
    Environ Sci Technol; 2017 Jan; 51(1):328-336. PubMed ID: 27983815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits.
    Miyata K; Takeuchi K; Kawagoe Y; Spijker P; Tracey J; Foster AS; Fukuma T
    J Phys Chem Lett; 2021 Aug; 12(33):8039-8045. PubMed ID: 34402624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of Pb at the calcite (104)-water interface.
    Callagon E; Fenter P; Nagy KL; Sturchio NC
    Environ Sci Technol; 2014 Aug; 48(16):9263-9. PubMed ID: 25007415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequestration of selenium on calcite surfaces revealed by nanoscale imaging.
    Putnis CV; Renard F; King HE; Montes-Hernandez G; Ruiz-Agudo E
    Environ Sci Technol; 2013; 47(23):13469-76. PubMed ID: 24219361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Protein Nanofibrils Orchestrates Calcite Step Movement through Selective Nonchiral Interactions.
    So CR; Liu J; Fears KP; Leary DH; Golden JP; Wahl KJ
    ACS Nano; 2015 Jun; 9(6):5782-91. PubMed ID: 25970003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum.
    Offeddu FG; Cama J; Soler JM; Putnis CV
    Beilstein J Nanotechnol; 2014; 5():1245-53. PubMed ID: 25161860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ imaging of interfacial precipitation of phosphate on Goethite.
    Wang L; Putnis CV; Ruiz-Agudo E; Hövelmann J; Putnis A
    Environ Sci Technol; 2015 Apr; 49(7):4184-92. PubMed ID: 25763812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.
    Renard F; Putnis CV; Montes-Hernandez G; King HE; Breedveld GD; Okkenhaug G
    Environ Sci Technol; 2018 Jan; 52(1):107-113. PubMed ID: 29210275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study.
    Chada VG; Hausner DB; Strongin DR; Rouff AA; Reeder RJ
    J Colloid Interface Sci; 2005 Aug; 288(2):350-60. PubMed ID: 15927599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observations of the Occlusion of Soil Organic Matter within Calcite.
    Chi J; Zhang W; Wang L; Putnis CV
    Environ Sci Technol; 2019 Jul; 53(14):8097-8104. PubMed ID: 31241316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques.
    Stipp SL; Lakshtanov LZ; Jensen JT; Baker JA
    J Contam Hydrol; 2003 Mar; 61(1-4):33-43. PubMed ID: 12598092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.
    Thompson JB; Paloczi GT; Kindt JH; Michenfelder M; Smith BL; Stucky G; Morse DE; Hansma PK
    Biophys J; 2000 Dec; 79(6):3307-12. PubMed ID: 11106633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of ethanol and water with the {1014} surface of calcite.
    Cooke DJ; Gray RJ; Sand KK; Stipp SL; Elliott JA
    Langmuir; 2010 Sep; 26(18):14520-9. PubMed ID: 20795691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization.
    Sand KK; Yang M; Makovicky E; Cooke DJ; Hassenkam T; Bechgaard K; Stipp SL
    Langmuir; 2010 Oct; 26(19):15239-47. PubMed ID: 20812690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption.
    Turner BD; Binning P; Stipp SL
    Environ Sci Technol; 2005 Dec; 39(24):9561-8. PubMed ID: 16475336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features.
    Friis AK; Davis TA; Figueira MM; Paquette J; Mucci A
    Environ Sci Technol; 2003 Jun; 37(11):2376-82. PubMed ID: 12831020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.