These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26636475)

  • 1. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.
    Wang L; Qin L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2016 Jan; 50(1):259-68. PubMed ID: 26636475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy.
    Wang L; Putnis CV; King HE; Hövelmann J; Ruiz-Agudo E; Putnis A
    Environ Sci Technol; 2017 Jan; 51(1):328-336. PubMed ID: 27983815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits.
    Miyata K; Takeuchi K; Kawagoe Y; Spijker P; Tracey J; Foster AS; Fukuma T
    J Phys Chem Lett; 2021 Aug; 12(33):8039-8045. PubMed ID: 34402624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of Pb at the calcite (104)-water interface.
    Callagon E; Fenter P; Nagy KL; Sturchio NC
    Environ Sci Technol; 2014 Aug; 48(16):9263-9. PubMed ID: 25007415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequestration of selenium on calcite surfaces revealed by nanoscale imaging.
    Putnis CV; Renard F; King HE; Montes-Hernandez G; Ruiz-Agudo E
    Environ Sci Technol; 2013; 47(23):13469-76. PubMed ID: 24219361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Protein Nanofibrils Orchestrates Calcite Step Movement through Selective Nonchiral Interactions.
    So CR; Liu J; Fears KP; Leary DH; Golden JP; Wahl KJ
    ACS Nano; 2015 Jun; 9(6):5782-91. PubMed ID: 25970003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum.
    Offeddu FG; Cama J; Soler JM; Putnis CV
    Beilstein J Nanotechnol; 2014; 5():1245-53. PubMed ID: 25161860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ imaging of interfacial precipitation of phosphate on Goethite.
    Wang L; Putnis CV; Ruiz-Agudo E; Hövelmann J; Putnis A
    Environ Sci Technol; 2015 Apr; 49(7):4184-92. PubMed ID: 25763812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.
    Renard F; Putnis CV; Montes-Hernandez G; King HE; Breedveld GD; Okkenhaug G
    Environ Sci Technol; 2018 Jan; 52(1):107-113. PubMed ID: 29210275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study.
    Chada VG; Hausner DB; Strongin DR; Rouff AA; Reeder RJ
    J Colloid Interface Sci; 2005 Aug; 288(2):350-60. PubMed ID: 15927599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observations of the Occlusion of Soil Organic Matter within Calcite.
    Chi J; Zhang W; Wang L; Putnis CV
    Environ Sci Technol; 2019 Jul; 53(14):8097-8104. PubMed ID: 31241316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques.
    Stipp SL; Lakshtanov LZ; Jensen JT; Baker JA
    J Contam Hydrol; 2003 Mar; 61(1-4):33-43. PubMed ID: 12598092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.
    Thompson JB; Paloczi GT; Kindt JH; Michenfelder M; Smith BL; Stucky G; Morse DE; Hansma PK
    Biophys J; 2000 Dec; 79(6):3307-12. PubMed ID: 11106633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of ethanol and water with the {1014} surface of calcite.
    Cooke DJ; Gray RJ; Sand KK; Stipp SL; Elliott JA
    Langmuir; 2010 Sep; 26(18):14520-9. PubMed ID: 20795691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization.
    Sand KK; Yang M; Makovicky E; Cooke DJ; Hassenkam T; Bechgaard K; Stipp SL
    Langmuir; 2010 Oct; 26(19):15239-47. PubMed ID: 20812690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption.
    Turner BD; Binning P; Stipp SL
    Environ Sci Technol; 2005 Dec; 39(24):9561-8. PubMed ID: 16475336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features.
    Friis AK; Davis TA; Figueira MM; Paquette J; Mucci A
    Environ Sci Technol; 2003 Jun; 37(11):2376-82. PubMed ID: 12831020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.