These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 26636618)
1. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Ham TR; Lee RT; Han S; Haque S; Vodovotz Y; Gu J; Burnett LR; Tomblyn S; Saul JM Biomacromolecules; 2016 Jan; 17(1):225-36. PubMed ID: 26636618 [TBL] [Abstract][Full Text] [Related]
2. Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Han S; Ham TR; Haque S; Sparks JL; Saul JM Acta Biomater; 2015 Sep; 23():201-213. PubMed ID: 25997587 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and biological properties of keratose biomaterials. de Guzman RC; Merrill MR; Richter JR; Hamzi RI; Greengauz-Roberts OK; Van Dyke ME Biomaterials; 2011 Nov; 32(32):8205-17. PubMed ID: 21835462 [TBL] [Abstract][Full Text] [Related]
4. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683 [TBL] [Abstract][Full Text] [Related]
5. Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Cohen DJ; Hyzy SL; Haque S; Olson LC; Boyan BD; Saul JM; Schwartz Z Tissue Eng Part A; 2018 Nov; 24(21-22):1616-1630. PubMed ID: 29905087 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. Yang G; Yao Y; Wang X Mater Sci Eng C Mater Biol Appl; 2018 Feb; 83():1-8. PubMed ID: 29208266 [TBL] [Abstract][Full Text] [Related]
7. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. Cao Y; Yao Y; Li Y; Yang X; Cao Z; Yang G J Colloid Interface Sci; 2019 May; 544():121-129. PubMed ID: 30826530 [TBL] [Abstract][Full Text] [Related]
8. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Esparza Y; Bandara N; Ullah A; Wu J Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111 [TBL] [Abstract][Full Text] [Related]
9. Keratin hydrogels support the sustained release of bioactive ciprofloxacin. Saul JM; Ellenburg MD; de Guzman RC; Van Dyke M J Biomed Mater Res A; 2011 Sep; 98(4):544-53. PubMed ID: 21681948 [TBL] [Abstract][Full Text] [Related]
10. Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. Tomblyn S; Pettit Kneller EL; Walker SJ; Ellenburg MD; Kowalczewski CJ; Van Dyke M; Burnett L; Saul JM J Biomed Mater Res B Appl Biomater; 2016 Jul; 104(5):864-79. PubMed ID: 25953729 [TBL] [Abstract][Full Text] [Related]
11. Structure-property relationships of meta-kerateine biomaterials derived from human hair. Richter JR; de Guzman RC; Greengauz-Roberts OK; Van Dyke M Acta Biomater; 2012 Jan; 8(1):274-81. PubMed ID: 21911088 [TBL] [Abstract][Full Text] [Related]
12. Some properties of keratin biomaterials: kerateines. Hill P; Brantley H; Van Dyke M Biomaterials; 2010 Feb; 31(4):585-93. PubMed ID: 19822360 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the Efficacy of an LL-37-Encapsulated Keratin Hydrogel for the Treatment of Full-Thickness Wounds. Jelodari S; Daemi H; Mohammadi P; Verdi J; J Al-Awady M; Ai J; Azami M ACS Appl Bio Mater; 2023 Jun; 6(6):2122-2136. PubMed ID: 37224450 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly behavior of the keratose proteins extracted from oxidized Ovis aries wool fibers. Pakkaner E; Yalçın D; Uysal B; Top A Int J Biol Macromol; 2019 Mar; 125():1008-1015. PubMed ID: 30572050 [TBL] [Abstract][Full Text] [Related]
15. Reduction of ectopic bone growth in critically-sized rat mandible defects by delivery of rhBMP-2 from kerateine biomaterials. Kowalczewski CJ; Tombyln S; Wasnick DC; Hughes MR; Ellenburg MD; Callahan MF; Smith TL; Van Dyke ME; Burnett LR; Saul JM Biomaterials; 2014 Mar; 35(10):3220-8. PubMed ID: 24439399 [TBL] [Abstract][Full Text] [Related]
16. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Chen M; Ren X; Dong L; Li X; Cheng H Int J Biol Macromol; 2021 Jul; 182():1259-1267. PubMed ID: 33991559 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation. Barati D; Kader S; Pajoum Shariati SR; Moeinzadeh S; Sawyer RH; Jabbari E Biomacromolecules; 2017 Feb; 18(2):398-412. PubMed ID: 28000441 [TBL] [Abstract][Full Text] [Related]
18. Keratose hydrogel for tissue regeneration and drug delivery. Ledford B; Barron C; Van Dyke M; He JQ Semin Cell Dev Biol; 2022 Aug; 128():145-153. PubMed ID: 34219034 [TBL] [Abstract][Full Text] [Related]
19. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. Sando L; Kim M; Colgrave ML; Ramshaw JA; Werkmeister JA; Elvin CM J Biomed Mater Res A; 2010 Dec; 95(3):901-11. PubMed ID: 20845488 [TBL] [Abstract][Full Text] [Related]
20. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Burnett LR; Rahmany MB; Richter JR; Aboushwareb TA; Eberli D; Ward CL; Orlando G; Hantgan RR; Van Dyke ME Biomaterials; 2013 Apr; 34(11):2632-40. PubMed ID: 23340195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]