BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26636934)

  • 1. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.
    Okotrub KA; Surovtsev NV
    Biophys J; 2015 Dec; 109(11):2227-34. PubMed ID: 26636934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of low temperatures on cytochrome photoresponse in mouse embryos.
    Sazhina EA; Okotrub KA; Amstislavsky SY; Surovtsev NV
    Arch Biochem Biophys; 2019 Jul; 669():32-38. PubMed ID: 31128967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Eur Biophys J; 2018 Sep; 47(6):655-662. PubMed ID: 29704025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photobleaching of the resonance Raman lines of cytochromes in living yeast cells.
    Okotrub KA; Surovtsev NV
    J Photochem Photobiol B; 2014 Dec; 141():269-74. PubMed ID: 25463677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman quantification of the redox state of cytochromes b and c in-vivo and in-vitro.
    Kakita M; Kaliaperumal V; Hamaguchi HO
    J Biophotonics; 2012 Jan; 5(1):20-4. PubMed ID: 22076935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the redox states of cytochromes in a living L929 (NCTC) cell by resonance Raman microspectroscopy.
    Kakita M; Okuno M; Hamaguchi HO
    J Biophotonics; 2013 Mar; 6(3):256-9. PubMed ID: 22573518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gated electron transfer of yeast iso-1 cytochrome c on self-assembled monolayer-coated electrodes.
    Feng JJ; Murgida DH; Kuhlmann U; Utesch T; Mroginski MA; Hildebrandt P; Weidinger IM
    J Phys Chem B; 2008 Nov; 112(47):15202-11. PubMed ID: 18975895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c.
    Peterson JR; Smith TA; Thordarson P
    Org Biomol Chem; 2010 Jan; 8(1):151-62. PubMed ID: 20024146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-linked protonation state changes in cytochrome bc1 identified by Poisson-Boltzmann electrostatics calculations.
    Klingen AR; Palsdottir H; Hunte C; Ullmann GM
    Biochim Biophys Acta; 2007 Mar; 1767(3):204-21. PubMed ID: 17349966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance Raman Microscopy study.
    Virdis B; Millo D; Donose BC; Batstone DJ
    PLoS One; 2014; 9(2):e89918. PubMed ID: 24587123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman study of the interactions between cytochrome c variants and cytochrome c oxidase.
    Hildebrandt P; Vanhecke F; Buse G; Soulimane T; Mauk AG
    Biochemistry; 1993 Oct; 32(40):10912-22. PubMed ID: 8399241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5.
    Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F
    Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.
    Karpegina YA; Okotrub KA; Brusentsev EY; Amstislavsky SY; Surovtsev NV
    Cryobiology; 2016 Apr; 72(2):148-53. PubMed ID: 26794460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer kinetics of cytochrome c probed by time-resolved surface-enhanced resonance Raman spectroscopy.
    Grosserueschkamp M; Friedrich MG; Plum M; Knoll W; Naumann RL
    J Phys Chem B; 2009 Feb; 113(8):2492-7. PubMed ID: 19191512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.
    Lebedev N; Strycharz-Glaven SM; Tender LM
    Chemphyschem; 2014 Feb; 15(2):320-7. PubMed ID: 24402861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel Nanowires Combined with Surface-Enhanced Raman Spectroscopy: Application in Label-Free Detection of Cytochrome c-Mediated Apoptosis.
    Zhang H; Kou Y; Li J; Chen L; Mao Z; Han XX; Zhao B; Ozaki Y
    Anal Chem; 2019 Jan; 91(2):1213-1216. PubMed ID: 30565909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy.
    Murgida DH; Hildebrandt P
    Acc Chem Res; 2004 Nov; 37(11):854-61. PubMed ID: 15612675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.