These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26636939)

  • 1. Important Role of Asparagines in Coupling the Pore and Votage-Sensor Domain in Voltage-Gated Sodium Channels.
    Sheets MF; Fozzard HA; Hanck DA
    Biophys J; 2015 Dec; 109(11):2277-86. PubMed ID: 26636939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains.
    Pless SA; Elstone FD; Niciforovic AP; Galpin JD; Yang R; Kurata HT; Ahern CA
    J Gen Physiol; 2014 May; 143(5):645-56. PubMed ID: 24778431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.
    Sheets MF; Hanck DA
    J Physiol; 2005 Feb; 563(Pt 1):83-93. PubMed ID: 15576449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythmic drug affinity.
    Hanck DA; Nikitina E; McNulty MM; Fozzard HA; Lipkind GM; Sheets MF
    Circ Res; 2009 Aug; 105(5):492-9. PubMed ID: 19661462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
    Gosselin-Badaroudine P; Delemotte L; Moreau A; Klein ML; Chahine M
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19250-5. PubMed ID: 23134726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating pore currents in DIIS4 mutations of NaV1.4 associated with periodic paralysis: saturation of ion flux and implications for disease pathogenesis.
    Struyk AF; Markin VS; Francis D; Cannon SC
    J Gen Physiol; 2008 Oct; 132(4):447-64. PubMed ID: 18824591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel.
    Goldschen-Ohm MP; Capes DL; Oelstrom KM; Chanda B
    Nat Commun; 2013; 4():1350. PubMed ID: 23322038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Na
    Hsu EJ; Zhu W; Schubert AR; Voelker T; Varga Z; Silva JR
    J Gen Physiol; 2017 Mar; 149(3):389-403. PubMed ID: 28232510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM; Edgerton GB; Shah RD; Hanck DA; Fozzard HA; Lipkind GM
    J Physiol; 2007 Jun; 581(Pt 2):741-55. PubMed ID: 17363383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3.
    Leipold E; Hansel A; Borges A; Heinemann SH
    Mol Pharmacol; 2006 Jul; 70(1):340-7. PubMed ID: 16638971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels.
    Kondratiev A; Tomaselli GF
    Mol Pharmacol; 2003 Sep; 64(3):741-52. PubMed ID: 12920212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Functional Characterization of a Novel Scorpion Toxin that Inhibits Na
    George K; Lopez-Mateos D; Abd El-Aziz TM; Xiao Y; Kline J; Bao H; Raza S; Stockand JD; Cummins TR; Fornelli L; Rowe MP; Yarov-Yarovoy V; Rowe AH
    Front Pharmacol; 2022; 13():846992. PubMed ID: 35662692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.
    Shimomura T; Irie K; Nagura H; Imai T; Fujiyoshi Y
    J Biol Chem; 2011 Mar; 286(9):7409-17. PubMed ID: 21177850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics.
    Arcisio-Miranda M; Muroi Y; Chowdhury S; Chanda B
    J Gen Physiol; 2010 Nov; 136(5):541-54. PubMed ID: 20937693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
    Sheets MF; Chen T; Hanck DA
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(8):H1213-21. PubMed ID: 23893162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.
    McNulty MM; Kyle JW; Lipkind GM; Hanck DA
    Mol Pharmacol; 2006 Nov; 70(5):1514-23. PubMed ID: 16885209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.
    Huang Y; Zhou X; Tang C; Zhang Y; Tao H; Chen P; Liu Z
    Peptides; 2015 Jun; 68():175-82. PubMed ID: 25817910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.